

Scala Native

Version 0.4.1

Scala Native is an optimizing ahead-of-time compiler and lightweight managed
runtime designed specifically for Scala. It features:

	Low-level primitives.

type Vec = CStruct3[Double, Double, Double]

val vec = stackalloc[Vec] // allocate c struct on stack
vec._1 = 10.0 // initialize fields
vec._2 = 20.0
vec._3 = 30.0
length(vec) // pass by reference

Pointers, structs, you name it. Low-level primitives
let you hand-tune your application to make it work
exactly as you want it to. You’re in control.

	Seamless interop with native code.

@extern object stdlib {
 def malloc(size: CSize): Ptr[Byte] = extern
}

val ptr = stdlib.malloc(32)

Calling C code has never been easier.
With the help of extern objects you can
seamlessly call native code without any
runtime overhead.

	Instant startup time.

> time hello-native
hello, native!

real 0m0.005s
user 0m0.002s
sys 0m0.002s

Scala Native is compiled ahead-of-time via LLVM.
This means that there is no sluggish warm-up
phase that’s common for just-in-time compilers.
Your code is immediately fast and ready for action.

Community

	Want to follow project updates?
Follow us on twitter [https://twitter.com/scala_native].

	Want to chat?
Join our Gitter chat channel [https://gitter.im/scala-native/scala-native].

	Have a question?
Ask it on Stack Overflow with tag scala-native [https://stackoverflow.com/questions/tagged/scala-native].

	Found a bug or want to propose a new feature?
Open an issue on Github [https://github.com/scala-native/scala-native/issues].

Documentation

This documentation is divided into
different parts. It’s recommended to go through the User’s Guide to get familiar
with Scala Native. Libraries will walk you through all the known libraries that
are currently available. Contributor’s Guide contains valuable information for people
who want to either contribute to the project or learn more about the internals
and the development process behind the project.

	User’s Guide
	Environment setup

	Building projects with sbt

	Language semantics

	Native code interoperability

	Testing

	Profiling

	Libraries
	Java Standard Library

	C Standard Library

	C POSIX Library

	Community Libraries

	Contributor’s Guide
	Contributing guidelines

	Guide to the sbt build

	The compiler plugin and code generator

	Native Intermediate Representation

	Name mangling

	IntelliJ IDEA

	Metals

	Blog
	Interflow: Scala Native’s upcoming flow-sensitive, profile-guided optimizer

	Changelog
	0.4.0 (Jan 19, 2021)

	0.4.0-M2 (May 23, 2019)

	0.4.0-M1 (May 23, 2019)

	0.3.9 (Apr 23, 2019)

	0.3.8 (Jul 16, 2018)

	0.3.7 (Mar 29, 2018)

	0.3.6 (Dec 12, 2017)

	0.3.5 (Dec 12, 2017)

	0.3.4 (Dec 12, 2017)

	0.3.3 (Sep 7, 2017)

	0.3.2 (Aug 8, 2017)

	0.3.1 (June 29, 2017)

	0.3.0 (June 15, 2017)

	0.2.1 (April 27, 2017)

	0.2.0 (April 26, 2017)

	0.1.0 (March 14, 2017)

	FAQ
	Troubleshooting

User’s Guide

	Environment setup
	Installing sbt

	Installing clang and runtime dependencies

	Building projects with sbt
	Minimal sbt project

	Scala versions

	Sbt settings and tasks

	Compilation modes

	Garbage collectors

	Link-Time Optimization (LTO)

	Cross compilation using target triple

	Publishing

	Including Native Code in your Application or Library

	Applications with Native Code

	Using libraries with Native Code

	Cross compilation

	Language semantics
	Interop extensions

	Multithreading

	Finalization

	Undefined behavior

	Native code interoperability
	Extern objects

	Pointer types

	Platform-specific types

	Size and alignment of types

	Unsigned integer types

	Testing

	Profiling
	Measuring execution time and memory

	Creating Flamegraphs

Environment setup

Scala Native has the following build dependencies:

	Java 8 or newer

	sbt 1.1.6 or newer

	LLVM/Clang 6.0 or newer

And following completely optional runtime library dependencies:

	Boehm GC 7.6.0 (optional)

	zlib 1.2.8 or newer (optional)

These are only required if you use the corresponding feature.

Installing sbt

macOS, Linux, and Windows

Please refer to this link [https://www.scala-sbt.org/release/docs/Setup.html]
for instructions for your operating system.

FreeBSD

$ pkg install sbt

Installing clang and runtime dependencies

Scala Native requires Clang, which is part of the LLVM [https://llvm.org] toolchain. The
recommended LLVM version is the most recent available for your system
provided that it works with Scala Native. The Scala Native sbt
plugin checks to ensure that clang is at least the minimum version
shown above.

Scala Native uses the Immix [https://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf] garbage collector by default.
You can use the Boehm [https://github.com/ivmai/bdwgc] garbage collector instead.
If you chose to use that alternate garbage collector both the native library
and header files must be provided at build time.

If you use classes from the java.util.zip for compression
zlib needs to be installed.

Note

Some package managers provide the library header files in separate
-dev packages.

Here are install instructions for a number of operating systems Scala
Native has been used with:

macOS

$ brew install llvm
$ brew install bdw-gc # optional

Note 1: Xcode should work as an alternative if preferred:
https://apps.apple.com/us/app/xcode/id497799835

Note 2: A version of zlib that is sufficiently recent comes with the
installation of macOS.

Ubuntu

$ sudo apt install clang
$ sudo apt install libgc-dev # optional

Arch Linux

$ sudo pacman -S llvm clang build-essential
$ sudo pacman -S gc # optional

Note: A version of zlib that is sufficiently recent comes with the
installation of Arch Linux.

Fedora 33

$ sudo dnf install llvm clang
$ sudo dnf groupinstall "Development Tools"
$ sudo dnf install gc-devel zlib-devel # both optional

FreeBSD 12.2 and later

$ pkg install llvm10
$ pkg install boehm-gc # optional

Note: A version of zlib that is sufficiently recent comes with the
installation of FreeBSD.

Nix/NixOS

$ wget https://raw.githubusercontent.com/scala-native/scala-native/master/scripts/scala-native.nix
$ nix-shell scala-native.nix -A clangEnv

Windows

Corporate environments and Windows policies can affect the method
used to setup your environment. The following procedure involves downloading
installers and running the installers using Powershell (Administrative)
to avoid some of these issues. If you have full access to your machine
then you can install using your favorite method. Chocolatey [https://chocolatey.org/] or Scoop [https://scoop.sh/]
can be substituted as needed or desired and are also mentioned above in the
installing sbt documentation.

	Download and install Visual Studio Community 2019

https://visualstudio.microsoft.com/

You may install it via the command line if needed.

> .\vs_community__<version>.exe

Select the Workloads tab and then Desktop development with C++ checkbox.
The defaults are fine. The C++ Clang tools for Windows does not work so
use the next step for details on installing LLVM.

[image: ../_images/vs-install.png]

Visual Studio install dialog showing options.

	Download and install LLVM

https://github.com/llvm/llvm-project/releases/tag/llvmorg-12.0.1

Select LLVM-12.0.1-win64.exe or newer. Digital signatures are provided.

You may also install LLVM via the command line, and if needed, install it into
your C:\Users\<login>\AppData\Local directory. The installer
will add LLVM and the associated directories and files.

> .\LLVM-12.0.1-win64.exe

	Add the binary location to your PATH

Using the install path above, you would add the following:

C:\Users\<login>\AppData\Local\LLVM\bin

Continue to Building projects with sbt.

Building projects with sbt

If you have reached this section you probably have a system that is now able to compile and run Scala Native programs.

Minimal sbt project

The easiest way to make a fresh project is to use our official gitter8
template. In an empty working directory, execute:

sbt new scala-native/scala-native.g8

This will:

	start sbt.

	prompt for a project name

	use the .g8 template [https://github.com/scala-native/scala-native.g8/tree/master/src/main/g8].
to generate a basic project with that name.

	create a project sub-directory with the project name.

	copy the contents at these template links to the corresponding location
in this new project sub-directory.

	project/plugins.sbt [https://github.com/scala-native/scala-native.g8/blob/master/src/main/g8/project/plugins.sbt]
adds the Scala Native plugin dependency and its version.

	project/build.properties [https://github.com/scala-native/scala-native.g8/blob/master/src/main/g8/project/build.properties]
specifies the sbt version.

	build.sbt [https://github.com/scala-native/scala-native.g8/blob/master/src/main/g8/build.sbt]
enables the plugin and specifies the Scala version.

	src/main/scala/Main.scala [https://github.com/scala-native/scala-native.g8/blob/master/src/main/g8/src/main/scala/Main.scala]
is a minimal application.

object Main {
 def main(args: Array[String]): Unit =
 println("Hello, world!")
}

To use the new project:

	Change the current working directory to the new project directory.

	For example, on linux with a project named AnswerToProjectNamePrompt,
type cd AnswerToProjectNamePrompt.

	Type sbt run.

This will get everything compiled and should have the expected output!

Please refer to the FAQ if you encounter any problems.

The generated project is a starting point. After the first run, you
should review the software versions in the generated files and, possibly,
update or customize them. Scaladex [https://index.scala-lang.org/]
is a useful resource for software versions.

Scala versions

Scala Native supports following Scala versions for corresponding releases:

	Scala Native Version

	Scala Versions

	0.1.x

	2.11.8

	0.2.x

	2.11.8, 2.11.11

	0.3.0-0.3.3

	2.11.8, 2.11.11

	0.3.4+, 0.4.0-M1, 0.4.0-M2

	2.11.8, 2.11.11, 2.11.12

	0.4.0

	2.11.12, 2.12.13, 2.13.4

	0.4.1

	2.11.12, 2.12.13, 2.13.4, 2.13.5

Sbt settings and tasks

The settings now should be set via nativeConfig in sbt. Setting
the options directly is now deprecated.

import scala.scalanative.build._

nativeConfig ~= {
 _.withLTO(LTO.thin)
 .withMode(Mode.releaseFast)
 .withGC(GC.commix)
}

	Since

	Name

	Type

	Description

	0.1

	compile

	Analysis

	Compile Scala code to NIR

	0.1

	run

	Unit

	Compile, link and run the generated binary

	0.1

	package

	File

	Similar to standard package with addition of NIR

	0.1

	publish

	Unit

	Similar to standard publish with addition of NIR (1)

	0.1

	nativeLink

	File

	Link NIR and generate native binary

	0.1

	nativeClang

	File

	Path to clang command

	0.1

	nativeClangPP

	File

	Path to clang++ command

	0.1

	nativeCompileOptions

	Seq[String]

	Extra options passed to clang verbatim during compilation

	0.1

	nativeLinkingOptions

	Seq[String]

	Extra options passed to clang verbatim during linking

	0.1

	nativeMode

	String

	One of "debug", "release-fast" or "release-full" (2)

	0.2

	nativeGC

	String

	One of "none", "boehm", "immix" or "commix" (3)

	0.3.3

	nativeLinkStubs

	Boolean

	Whether to link @stub definitions, or to ignore them

	0.4.0

	nativeConfig

	NativeConfig

	Configuration of the Scala Native plugin

	0.4.0

	nativeLTO

	String

	One of "none", "full" or "thin" (4)

	0.4.0

	targetTriple

	String

	The platform LLVM target triple

	0.4.0

	nativeCheck

	Boolean

	Shall the linker check intermediate results for correctness?

	0.4.0

	nativeDump

	Boolean

	Shall the linker dump intermediate results to disk?

	See Publishing and Cross compilation for details.

	See Compilation modes for details.

	See Garbage collectors for details.

	See Link-Time Optimization (LTO) for details.

Compilation modes

Scala Native supports three distinct linking modes:

	debug. (default)

Default mode. Optimized for shortest compilation time. Runs fewer
optimizations and is much more suited for iterative development workflow.
Similar to clang’s -O0.

	release. (deprecated since 0.4.0)

Aliases to release-full.

	release-fast. (introduced in 0.4.0)

Optimize for runtime performance while still trying to keep
quick compilation time and small emitted code size.
Similar to clang’s -O2 with addition of link-time optimization over
the whole application code.

	release-full. (introduced in 0.4.0)

Optimized for best runtime performance, even if hurts compilation
time and code size. This modes includes a number of more aggresive optimizations
such type-driven method duplication and more aggresive inliner.
Similar to clang’s -O3 with addition of link-time optimization over
the whole application code.

Garbage collectors

	immix. (default since 0.3.8, introduced in 0.3)

Immix is a mostly-precise mark-region tracing garbage collector.
More information about the collector is available as part of the original
0.3.0 announcement [https://github.com/scala-native/scala-native/releases/tag/v0.3.0].

	commix. (introduced in 0.4)

Commix is parallel mark and concurrent sweep garbage collector based on Immix

	boehm. (default through 0.3.7)

Conservative generational garbage collector. More information is available
at the Github project “ivmai/bdgc” page.

	none. (experimental, introduced in 0.2)

Garbage collector that allocates things without ever freeing them. Useful
for short-running command-line applications or applications where garbage
collections pauses are not acceptable.

Link-Time Optimization (LTO)

Scala Native relies on link-time optimization to maximize runtime performance
of release builds. There are three possible modes that are currently supported:

	none. (default)

Does not inline across Scala/C boundary. Scala to Scala calls
are still optimized.

	full. (available on Clang 3.8 or older)

Inlines across Scala/C boundary using legacy FullLTO mode.

	thin. (recommended on Clang 3.9 or newer)

Inlines across Scala/C boundary using LLVM’s latest
ThinLTO mode [https://clang.llvm.org/docs/ThinLTO.html].
Offers both better compilation speed and
better runtime performance of the generated code
than the legacy FullLTO mode.

Cross compilation using target triple

The target triple can be set to allow cross compilation (introduced in 0.4.0).
Use the following approach in sbt to set the target triple:

nativeConfig ~= { _.withTargetTriple("x86_64-apple-macosx10.14.0") }

you may create a few dedicated projects with different target triples. If you
have multiple project definitions for different macOS architectures, eg:

lazy val sandbox64 = project.in(file("sandbox"))
 .settings(nativeConfig ~= { _.withTargetTriple("arm64-apple-darwin20.6.0") })

lazy val sandboxM1 = project.in(file("sandbox"))
 .settings(nativeConfig ~= { _.withTargetTriple("x86_64-apple-darwin20.6.0") })

These project definitions allow to produce different binaries - one dedicated
for the x86_64 platform and another one for arm64. You may easily combine
them to one so called fat binary or universal binary via lipo:

lipo -create sandbox64/target/scala-2.12/sandbox64-out sandboxM1/target/scala-2.12/sandboxM1-out -output sandbox-out

which produces sandbox-out that can be used at any platform.

You may use FatELF https://icculus.org/fatelf/ to build fat binaries for Linux.

Publishing

Scala Native supports sbt’s standard workflow for the package distribution:

	Compile your code.

	Generate a jar with all of the class files and NIR files.

	Publish the jar to sonatype [https://github.com/xerial/sbt-sonatype], bintray [https://github.com/sbt/sbt-bintray] or any other 3rd party hosting service.

Once the jar has been published, it can be resolved through sbt’s standard
package resolution system.

Including Native Code in your Application or Library

Scala Native uses native C and C++ code to interact with the underlying
platform and operating system. Since the tool chain compiles and links
the Scala Native system, it can also compile and link C and C++ code
included in an application project or a library that supports Scala
Native that includes C and/or C++ source code.

Supported file extensions for native code are .c, .cpp, and .S.

Note that .S files or assembly code is not portable across different CPU
architectures so conditional compilation would be needed to support
more than one architecture. You can also include header files with
the extensions .h and .hpp.

Applications with Native Code

In order to create standalone native projects with native code use the
following procedure. You can start with the basic Scala Native template.

Add C/C++ code into src/main/resources/scala-native. The code can be put in
subdirectories as desired inside the scala-native directory. As an example,
create a file named myapi.c and put it into your scala-native directory
as described above.

long long add3(long long in) { return in + 3; }

Next, create a main file as follows:

import scalanative.unsafe._

@extern
object myapi {
 def add3(in: CLongLong): CLongLong = extern
}

object Main {
 import myapi._
 def main(args: Array[String]): Unit = {
 val res = add3(-3L)
 assert(res == 0L)
 println(s"Add3 to -3 = $res")
 }
}

Finally, compile and run this like a normal Scala Native application.

Using libraries with Native Code

Libraries developed to target the Scala Native platform
can have C, C++, or assembly files included in the dependency. The code is
added to src/main/resources/scala-native and is published like a normal
Scala library. The code can be put in subdirectories as desired inside the
scala-native directory. These libraries can also be cross built to
support Scala/JVM or Scala.js if the Native portions have replacement
code on the respective platforms.

The primary purpose of this feature is to allow libraries to support
Scala Native that need native “glue” code to operate. The current
C interopt does not allow direct access to macro defined constants and
functions or allow passing “struct”s from the stack to C functions.
Future versions of Scala Native may relax these restrictions making
this feature obsolete.

Note: This feature is not a replacement for developing or distributing
native C/C++ libraries and should not be used for this purpose.

If the dependency contains native code, Scala Native will identify the
library as a dependency that has native code and will unpack the library.
Next, it will compile, link, and optimize any native code along with the
Scala Native runtime and your application code. No additional information
is needed in the build file other than the normal dependency so it is
transparent to the library user.

This feature can be used in combination with the feature above that
allows native code in your application.

Cross compilation

sbt-crossproject [https://github.com/portable-scala/sbt-crossproject] is an
sbt plugin that lets you cross-compile your projects against all three major
platforms in Scala: JVM, JavaScript via Scala.js, and native via Scala Native.
It is based on the original cross-project idea from Scala.js and supports the
same syntax for existing JVM/JavaScript cross-projects. Please refer to the
project’s
README [https://github.com/portable-scala/sbt-crossproject/blob/master/README.md]
for details.

Continue to Language semantics.

Language semantics

In general, the semantics of the Scala Native language are the same as Scala on
the JVM. However, a few differences exist, which we mention here.

Interop extensions

Annotations and types defined scala.scalanative.unsafe may modify semantics
of the language for sake of interoperability with C libraries, read more about
those in Native code interoperability section.

Multithreading

Scala Native doesn’t yet provide libraries for parallel multi-threaded
programming and assumes single-threaded execution by default.

It’s possible to use C libraries to get access to multi-threading and
synchronization primitives but this is not officially supported at the moment.

Finalization

Finalize method from java.lang.Object is never called in Scala Native.

Undefined behavior

Generally, Scala Native follows most of the special error conditions
similarly to JVM:

	Arrays throw IndexOutOfBoundsException on out-of-bounds access.

	Casts throw ClassCastException on incorrect casts.

	Accessing a field or method on null, throwing null` exception, throws NullPointerException.

	Integer division by zero throws ArithmeticException.

There are a few exceptions:

	Stack overflows are undefined behavior and would typically segfault on supported architectures instead of throwing StackOverflowError.

	Exhausting a heap space results in crash with a stack trace instead of throwing OutOfMemoryError.

Continue to Native code interoperability.

Native code interoperability

Scala Native provides an interop layer that makes it easy to interact with
foreign native code. This includes C and other languages that can expose APIs
via C ABI (e.g. C++, D, Rust etc.)

All of the interop APIs discussed here are defined in
scala.scalanative.unsafe package. For brevity, we’re going
to refer to that namespace as just unsafe.

Extern objects

Extern objects are simple wrapper objects that demarcate scopes where methods
are treated as their native C ABI-friendly counterparts. They are
roughly analogous to header files with top-level function declarations in C.

For example, to call C’s malloc one might declare it as following:

import scala.scalanative.unsafe._

@extern
object libc {
 def malloc(size: CSize): Ptr[Byte] = extern
}

extern on the right hand side of the method definition signifies
that the body of the method is defined elsewhere in a native library that is
available on the library path (see Linking with native libraries). The
signature of the external function must match the signature of the original C
function (see Finding the right signature).

Finding the right signature

To find a correct signature for a given C function one must provide an
equivalent Scala type for each of the arguments:

	C Type

	Scala Type

	void

	Unit

	bool

	unsafe.CBool

	char

	unsafe.CChar

	signed char

	unsafe.CSignedChar

	unsigned char

	unsafe.CUnsignedChar 1

	short

	unsafe.CShort

	unsigned short

	unsafe.CUnsignedShort 1

	int

	unsafe.CInt

	long int

	unsafe.CLongInt

	unsigned int

	unsafe.CUnsignedInt 1

	unsigned long int

	unsafe.CUnsignedLongInt 1

	long

	unsafe.CLong

	unsigned long

	unsafe.CUnsignedLong 1

	long long

	unsafe.CLongLong

	unsigned long long

	unsafe.CUnsignedLongLong 1

	size_t

	unsafe.CSize

	ssize_t

	unsafe.CSSize

	ptrdiff_t

	unsafe.CPtrDiff 2

	wchar_t

	unsafe.CWideChar

	char16_t

	unsafe.CChar16

	char32_t

	unsafe.CChar32

	float

	unsafe.CFloat

	double

	unsafe.CDouble

	void*

	unsafe.Ptr[Byte] 2

	int*

	unsafe.Ptr[unsafe.CInt] 2

	char*

	unsafe.CString 2 3

	int (*)(int)

	unsafe.CFuncPtr1[unsafe.CInt, unsafe.CInt] 2 4

	struct { int x, y; }*

	unsafe.Ptr[unsafe.CStruct2[unsafe.CInt, unsafe.CInt]] 2 5

	struct { int x, y; }

	Not supported

	1(1,2,3,4,5,6)

	See Unsigned integer types.

	2(1,2,3,4,5,6)

	See Pointer types.

	3

	See Byte strings.

	4

	See Function pointers.

	5

	See Memory layout types.

Linking with native libraries

C compilers typically require to pass an additional -l mylib flag to
dynamically link with a library. In Scala Native, one can annotate libraries to
link with using the @link annotation.

import scala.scalanative.unsafe._

@link("mylib")
@extern
object mylib {
 def f(): Unit = extern
}

Whenever any of the members of mylib object are reachable, the Scala Native
linker will automatically link with the corresponding native library.

As in C, library names are specified without the lib prefix. For example,
the library libuv [https://github.com/libuv/libuv] corresponds to
@link("uv") in Scala Native.

It is possible to rename functions using the @name annotation. Its use is
recommended to enforce the Scala naming conventions in bindings:

import scala.scalanative.unsafe._

@link("uv")
@extern
object uv {
 @name("uv_uptime")
 def uptime(result: Ptr[CDouble]): Int = extern
}

If a library has multiple components, you could split the bindings into separate
objects as it is permitted to use the same @link annotation more than once.

Variadic functions

Scala Native supports native interoperability with C’s variadic argument
list type (i.e. va_list), but not ... varargs. For example vprintf
can be declared as:

import scala.scalanative.unsafe._

@extern
object mystdio {
 def vprintf(format: CString, args: CVarArgList): CInt = extern
}

One can wrap a function in a nicer API like:

import scala.scalanative.unsafe._

def myprintf(format: CString, args: CVarArg*): CInt =
 Zone { implicit z =>
 mystdio.vprintf(format, toCVarArgList(args.toSeq))
 }

And then call it just like a regular Scala function:

myprintf(c"2 + 3 = %d, 4 + 5 = %d", 2 + 3, 4 + 5)

Pointer types

Scala Native provides a built-in equivalent of C’s pointers via
unsafe.Ptr[T] data type. Under the hood pointers are implemented
using unmanaged machine pointers.

Operations on pointers are closely related to their C counterparts and
are compiled into equivalent machine code:

	Operation

	C syntax

	Scala Syntax

	Load value

	*ptr

	!ptr

	Store value

	*ptr = value

	!ptr = value

	Pointer to index

	ptr + i, &ptr[i]

	ptr + i

	Elements between

	ptr1 - ptr2

	ptr1 - ptr2

	Load at index

	ptr[i]

	ptr(i)

	Store at index

	ptr[i] = value

	ptr(i) = value

	Pointer to field

	&ptr->name

	ptr.atN

	Load a field

	ptr->name

	ptr._N

	Store a field

	ptr->name = value

	ptr._N = value

Where N is the index of the field name in the struct.
See Memory layout types for details.

Function pointers

It is possible to use external functions that take function pointers. For
example given the following signature in C:

void test(void (* f)(char *));

One can declare it as follows in Scala Native:

def test(f: unsafe.CFuncPtr1[CString, Unit]): Unit = unsafe.extern

CFuncPtrN types are final classes containing pointer to underlying
C function pointer. They automatically handle boxing call arguments
and unboxing result. You can create them from C pointer using CFuncPtr helper methods:

def fnDef(str: CString): CInt = ???

val anyPtr: Ptr[Byte] = CFuncPtr.toPtr {
 CFuncPtr1.fromScalaFunction(fnDef)
}

type StringLengthFn = CFuncPtr1[CString, CInt]
val func: StringLengthFn = CFuncPtr.fromPtr[StringLengthFn](anyPtr)
func(c"hello")

It’s also possible to create CFuncPtrN from Scala FunctionN.
You can do this by using implicit method conversion method
from the corresponding companion object.

import scalanative.unsafe.CFuncPtr0
def myFunc(): Unit = println("hi there!")

val myFuncPtr: CFuncPtr0[Unit] = CFuncPtr0.fromScalaFunction(myFunc)
val myImplFn: CFuncPtr0[Unit] = myFunc _
val myLambdaFuncPtr: CFuncPtr0[Unit] = () => println("hello!")

On Scala 2.12 or newer, the Scala language automatically converts
from closures to SAM types:

val myfuncptr: unsafe.CFuncPtr0[Unit] = () => println("hi there!")

Memory management

Unlike standard Scala objects that are managed automatically by the underlying
runtime system, one has to be extra careful when working with unmanaged memory.

	Zone allocation. (since 0.3)

Zones (also known as memory regions/contexts) are a technique for
semi-automatic memory management. Using them one can bind allocations
to a temporary scope in the program and the zone allocator will
automatically clean them up for you as soon as execution goes out of it:

import scala.scalanative.unsafe._

Zone { implicit z =>
 val buffer = alloc[Byte](n)
}

alloc requests memory sufficient to contain n values of a given type.
If number of elements is not specified, it defaults to a single element.
Memory is zeroed out by default.

Zone allocation is the preferred way to allocate temporary unmanaged memory.
It’s idiomatic to use implicit zone parameters to abstract over code that
has to zone allocate.

One typical example of this are C strings that are created from
Scala strings using unsafe.toCString. The conversion takes implicit
zone parameter and allocates the result in that zone.

When using zone allocated memory one has to be careful not to
capture this memory beyond the lifetime of the zone. Dereferencing
zone-allocated memory after the end of the zone is undefined behavior.

	Stack allocation.

Scala Native provides a built-in way to perform stack allocations of
using unsafe.stackalloc function:

val buffer = unsafe.stackalloc[Byte](256)

This code will allocate 256 bytes that are going to be available until
the enclosing method returns. Number of elements to be allocated is optional
and defaults to 1 otherwise. Memory is not zeroed out by default.

When using stack allocated memory one has to be careful not to capture
this memory beyond the lifetime of the method. Dereferencing stack allocated
memory after the method’s execution has completed is undefined behavior.

	Manual heap allocation.

Scala Native’s library contains a bindings for a subset of the standard
libc functionality. This includes the trio of malloc, realloc and
free functions that are defined in unsafe.stdlib extern object.

Calling those will let you allocate memory using system’s standard
dynamic memory allocator. Every single manual allocation must also
be freed manually as soon as it’s not needed any longer.

Apart from the standard system allocator one might
also bind to plethora of 3-rd party allocators such as jemalloc [http://jemalloc.net/] to
serve the same purpose.

Undefined behavior

Similarly to their C counter-parts, behavior of operations that
access memory is subject to undefined behaviour for following conditions:

	Dereferencing null.

	Out-of-bounds memory access.

	Use-after-free.

	Use-after-return.

	Double-free, invalid free.

Memory layout types

Memory layout types are auxiliary types that let one specify memory layout of
unmanaged memory. They are meant to be used purely in combination with native
pointers and do not have a corresponding first-class values backing them.

	unsafe.Ptr[unsafe.CStructN[T1, ..., TN]]

Pointer to a C struct with up to 22 fields.
Type parameters are the types of corresponding fields.
One may access fields of the struct using _N helper
methods on a pointer value:

val ptr = unsafe.stackalloc[unsafe.CStruct2[Int, Int]]
ptr._1 = 10
ptr._2 = 20
println(s"first ${ptr._1}, second ${ptr._2}")

Here _N is an accessor for the field number N.

	unsafe.Ptr[unsafe.CArray[T, N]]

Pointer to a C array with statically-known length N. Length is encoded as
a type-level natural number. Natural numbers are types that are composed of
base naturals Nat._0, ... Nat._9 and an additional Nat.DigitN
constructors, where N refers to number of digits in the given number.
So for example number 1024 is going to be encoded as following:

import scalanative.unsafe._, Nat._

type _1024 = Digit4[_1, _0, _2, _4]

Once you have a natural for the length, it can be used as an array length:

val arrptr = unsafe.stackalloc[CArray[Byte, _1024]]

You can find an address of n-th array element via arrptr.at(n).

Byte strings

Scala Native supports byte strings via c"..." string interpolator
that gets compiled down to pointers to statically-allocated zero-terminated
strings (similarly to C):

import scalanative.unsafe._
import scalanative.libc._

// CString is an alias for Ptr[CChar]
val msg: CString = c"Hello, world!"
stdio.printf(msg)

It does not allow any octal values or escape characters not supported by Scala compiler, like \a or \?, but also unicode escapes.
It is possible to use C-style hex values up to value 0xFF, eg. c"Hello \x61\x62\x63"

Additionally, we also expose two helper functions unsafe.fromCString and unsafe.toCString
to convert between C-style CString (sequence of Bytes, usually interpreted as UTF-8 or ASCII)
and Java-style String (sequence of 2-byte Chars usually interpreted as UTF-16).

It’s worth to remember that unsafe.toCString and c”…” interpreter cannot be used interchangeably as they handle literals differently.
Helper methods unsafe.fromCString` and ``unsafe.toCString are charset aware.
They will always assume String is UTF-16, and take a Charset parameter to know what encoding to assume for the byte string (CString) - if not present it is UTF-8.

If passed a null as an argument, they will return a null of the appropriate
type instead of throwing a NullPointerException.

Platform-specific types

Scala Native defines the type Word and its unsigned counterpart, UWord.
A word corresponds to Int on 32-bit architectures and to Long on 64-bit
ones.

Size and alignment of types

In order to statically determine the size of a type, you can use the sizeof
function which is Scala Native’s counterpart of the eponymous C operator. It
returns the size in bytes:

println(unsafe.sizeof[Byte]) // 1
println(unsafe.sizeof[CBool]) // 1
println(unsafe.sizeof[CShort]) // 2
println(unsafe.sizeof[CInt]) // 4
println(unsafe.sizeof[CLong]) // 8

It can also be used to obtain the size of a structure:

type TwoBytes = unsafe.CStruct2[Byte, Byte]
println(unsafe.sizeof[TwoBytes]) // 2

Additionally, you can also use alignmentof to find the alignment of a given type:

println(unsafe.alignmentof[Int]) // 4
println(unsafe.alignmentof[unsafe.CStruct2[Byte, Long]]) // 8

Unsigned integer types

Scala Native provides support for four unsigned integer types:

	unsigned.UByte

	unsigned.UShort

	unsigned.UInt

	unsigned.ULong

They share the same primitive operations as signed integer types.
Primitive operation between two integer values are supported only
if they have the same signedness (they must both signed or both unsigned.)

Conversions between signed and unsigned integers must be done explicitly
using byteValue.toUByte, shortValue.toUShort, intValue.toUInt, longValue.toULong
and conversely unsignedByteValue.toByte, unsignedShortValue.toShort, unsignedIntValue.toInt,
unsignedLongValue.toLong.

Continue to Libraries.

Testing

Scala Native comes with JUnit support out of the box.
This means that you can write JUnit tests, in the same way
you would do for a Java project.

To enable JUnit support, add the following lines to your build.sbt file:

libraryDependencies += "org.scala-native" %%% "junit-runtime" % 0.4.1
addCompilerPlugin("org.scala-native" % "junit-plugin" % 0.4.1 cross CrossVersion.full)

If you want to get more detailed output from the JUnit runtime, also include the following line:

testOptions += Tests.Argument(TestFrameworks.JUnit, "-a", "-s", "-v")

Then, add your tests, for example in the src/test/scala/ directory:

import org.junit.Assert._
import org.junit.Test

class MyTest {
 @Test def superComplicatedTest(): Unit = {
 assertTrue("this assertion should pass", true)
 }
}

Finally, run the tests in sbt by running test to run all tests.
You may also use testOnly to run a particular test, for example:

testOnly MyTest
testOnly MyTest.superComplicatedTest

Profiling

In this section you can find some tips on how to profile your Scala Native binary in Linux.

Measuring execution time and memory

	With the time command you can measure execution time:

$ time ./target/scala-2.13/scala-native-out
real 0m0,718s
user 0m0,419s
sys 0m0,299s

	With the /usr/bin/time --verbose command you can also see memory consumption:

Creating Flamegraphs

A flamegraph [http://www.brendangregg.com/flamegraphs.html] is a visualization of the most frequent code-paths of a program. You can use flamegraphs to see where your program spends most of its CPU time. Follow these steps:

	You need to install the perf command if you haven’t got it already:

$ sudo apt update && sudo apt install linux-tools-generic

	Then clone the flamegraph repository into e.g. ~/git/hub/

$ cd ~ && mkdir -p git/hub && cd git/hub/
$ git clone git@github.com:brendangregg/FlameGraph.git

	Then navigate to your Scala Native project and, after building your binary, you can create a flamegraph like so:

$ sudo perf record -F 1000 -a -g ./target/scala-2.13/scala-native-out
$ sudo perf script > out.perf
$ ~/git/hub/FlameGraph/stackcollapse-perf.pl out.perf > out.folded
$ ~/git/hub/FlameGraph/flamegraph.pl out.folded > kernel.svg

	Open the file kernel.svg in your browser and you can zoom in the interactive SVG-file by clicking on the colored boxes as explained here [https://github.com/brendangregg/FlameGraph/blob/master/README.md]. A box represents a stack frame. The broader a box is the more CPU cycles have been spent. The higher the box is, the deeper in the call-chain it is.

	The perf option -F 1000 means that the sampling frequency is set to 1000 Hz. You can experiment with changing this option to get the right accuracy; start with e.g. -F 99 and see what you get. You can then increase the sampling frequency to see if more details adds interesting information.

Libraries

	Java Standard Library
	Supported classes

	Regular expressions (java.util.regex)

	C Standard Library

	C POSIX Library

	Community Libraries

Java Standard Library

Scala Native supports a subset of the JDK core libraries reimplemented in Scala.

Supported classes

Here is the list of currently available classes:

	java.io.BufferedInputStream

	java.io.BufferedOutputStream

	java.io.BufferedReader

	java.io.BufferedWriter

	java.io.ByteArrayInputStream

	java.io.ByteArrayOutputStream

	java.io.Closeable

	java.io.DataInput

	java.io.DataInputStream

	java.io.DataOutput

	java.io.DataOutputStream

	java.io.EOFException

	java.io.File

	java.io.FileDescriptor

	java.io.FileFilter

	java.io.FileInputStream

	java.io.FileNotFoundException

	java.io.FileOutputStream

	java.io.FileReader

	java.io.FileWriter

	java.io.FilenameFilter

	java.io.FilterInputStream

	java.io.FilterOutputStream

	java.io.FilterReader

	java.io.Flushable

	java.io.IOException

	java.io.InputStream

	java.io.InputStreamReader

	java.io.InterruptedIOException

	java.io.LineNumberReader

	java.io.NotSerializableException

	java.io.ObjectStreamException

	java.io.OutputStream

	java.io.OutputStreamWriter

	java.io.PrintStream

	java.io.PrintWriter

	java.io.PushbackInputStream

	java.io.PushbackReader

	java.io.RandomAccessFile

	java.io.Reader

	java.io.Serializable

	java.io.StringReader

	java.io.StringWriter

	java.io.SyncFailedException

	java.io.UTFDataFormatException

	java.io.UnsupportedEncodingException

	java.io.Writer

	java.lang.AbstractMethodError

	java.lang.AbstractStringBuilder

	java.lang.Appendable

	java.lang.ArithmeticException

	java.lang.ArrayIndexOutOfBoundsException

	java.lang.ArrayStoreException

	java.lang.AssertionError

	java.lang.AutoCloseable

	java.lang.Boolean

	java.lang.BootstrapMethodError

	java.lang.Byte

	java.lang.ByteCache

	java.lang.CharSequence

	java.lang.Character

	java.lang.Character$Subset

	java.lang.Character$UnicodeBlock

	java.lang.CharacterCache

	java.lang.ClassCastException

	java.lang.ClassCircularityError

	java.lang.ClassFormatError

	java.lang.ClassLoader

	java.lang.ClassNotFoundException

	java.lang.CloneNotSupportedException

	java.lang.Cloneable

	java.lang.Comparable

	java.lang.Double

	java.lang.Enum

	java.lang.EnumConstantNotPresentException

	java.lang.Error

	java.lang.Exception

	java.lang.ExceptionInInitializerError

	java.lang.Float

	java.lang.IllegalAccessError

	java.lang.IllegalAccessException

	java.lang.IllegalArgumentException

	java.lang.IllegalMonitorStateException

	java.lang.IllegalStateException

	java.lang.IllegalThreadStateException

	java.lang.IncompatibleClassChangeError

	java.lang.IndexOutOfBoundsException

	java.lang.InheritableThreadLocal

	java.lang.InstantiationError

	java.lang.InstantiationException

	java.lang.Integer

	java.lang.IntegerCache

	java.lang.IntegerDecimalScale

	java.lang.InternalError

	java.lang.InterruptedException

	java.lang.Iterable

	java.lang.LinkageError

	java.lang.Long

	java.lang.LongCache

	java.lang.Math

	java.lang.MathRand

	java.lang.NegativeArraySizeException

	java.lang.NoClassDefFoundError

	java.lang.NoSuchFieldError

	java.lang.NoSuchFieldException

	java.lang.NoSuchMethodError

	java.lang.NoSuchMethodException

	java.lang.NullPointerException

	java.lang.Number

	java.lang.NumberFormatException

	java.lang.OutOfMemoryError

	java.lang.Process

	java.lang.ProcessBuilder

	java.lang.ProcessBuilder$Redirect

	java.lang.ProcessBuilder$Redirect$Type

	java.lang.Readable

	java.lang.ReflectiveOperationException

	java.lang.RejectedExecutionException

	java.lang.Runnable

	java.lang.Runtime

	java.lang.Runtime$ProcessBuilderOps

	java.lang.RuntimeException

	java.lang.SecurityException

	java.lang.Short

	java.lang.ShortCache

	java.lang.StackOverflowError

	java.lang.StackTrace

	java.lang.StackTraceElement

	java.lang.StackTraceElement$Fail

	java.lang.String

	java.lang.StringBuffer

	java.lang.StringBuilder

	java.lang.StringIndexOutOfBoundsException

	java.lang.System

	java.lang.Thread

	java.lang.Thread$UncaughtExceptionHandler

	java.lang.ThreadDeath

	java.lang.ThreadLocal

	java.lang.Throwable

	java.lang.TypeNotPresentException

	java.lang.UnixProcess

	java.lang.UnixProcess$ProcessMonitor

	java.lang.UnknownError

	java.lang.UnsatisfiedLinkError

	java.lang.UnsupportedClassVersionError

	java.lang.UnsupportedOperationException

	java.lang.VerifyError

	java.lang.VirtualMachineError

	java.lang.Void

	java.lang.annotation.Annotation

	java.lang.annotation.Retention

	java.lang.annotation.RetentionPolicy

	java.lang.ref.PhantomReference

	java.lang.ref.Reference

	java.lang.ref.ReferenceQueue

	java.lang.ref.SoftReference

	java.lang.ref.WeakReference

	java.lang.reflect.AccessibleObject

	java.lang.reflect.Array

	java.lang.reflect.Constructor

	java.lang.reflect.Executable

	java.lang.reflect.Field

	java.lang.reflect.InvocationTargetException

	java.lang.reflect.Method

	java.lang.reflect.UndeclaredThrowableException

	java.math.BigDecimal

	java.math.BigInteger

	java.math.BitLevel

	java.math.Conversion

	java.math.Division

	java.math.Elementary

	java.math.Logical

	java.math.MathContext

	java.math.Multiplication

	java.math.Primality

	java.math.RoundingMode

	java.net.BindException

	java.net.ConnectException

	java.net.Inet4Address

	java.net.Inet6Address

	java.net.InetAddress

	java.net.InetAddressBase

	java.net.InetSocketAddress

	java.net.MalformedURLException

	java.net.NoRouteToHostException

	java.net.PlainSocketImpl

	java.net.PortUnreachableException

	java.net.ServerSocket

	java.net.Socket

	java.net.SocketAddress

	java.net.SocketException

	java.net.SocketImpl

	java.net.SocketInputStream

	java.net.SocketOption

	java.net.SocketOptions

	java.net.SocketOutputStream

	java.net.SocketTimeoutException

	java.net.URI

	java.net.URI$Helper

	java.net.URIEncoderDecoder

	java.net.URISyntaxException

	java.net.URL

	java.net.URLClassLoader

	java.net.URLConnection

	java.net.URLEncoder

	java.net.UnknownHostException

	java.net.UnknownServiceException

	java.nio.Buffer

	java.nio.BufferOverflowException

	java.nio.BufferUnderflowException

	java.nio.ByteBuffer

	java.nio.ByteOrder

	java.nio.CharBuffer

	java.nio.DoubleBuffer

	java.nio.FloatBuffer

	java.nio.IntBuffer

	java.nio.InvalidMarkException

	java.nio.LongBuffer

	java.nio.MappedByteBuffer

	java.nio.ReadOnlyBufferException

	java.nio.ShortBuffer

	java.nio.channels.ByteChannel

	java.nio.channels.Channel

	java.nio.channels.Channels

	java.nio.channels.ClosedChannelException

	java.nio.channels.FileChannel

	java.nio.channels.FileChannel$MapMode

	java.nio.channels.FileLock

	java.nio.channels.GatheringByteChannel

	java.nio.channels.InterruptibleChannel

	java.nio.channels.NonReadableChannelException

	java.nio.channels.NonWritableChannelException

	java.nio.channels.OverlappingFileLockException

	java.nio.channels.ReadableByteChannel

	java.nio.channels.ScatteringByteChannel

	java.nio.channels.SeekableByteChannel

	java.nio.channels.WritableByteChannel

	java.nio.channels.spi.AbstractInterruptibleChannel

	java.nio.charset.CharacterCodingException

	java.nio.charset.Charset

	java.nio.charset.CharsetDecoder

	java.nio.charset.CharsetEncoder

	java.nio.charset.CoderMalfunctionError

	java.nio.charset.CoderResult

	java.nio.charset.CodingErrorAction

	java.nio.charset.IllegalCharsetNameException

	java.nio.charset.MalformedInputException

	java.nio.charset.StandardCharsets

	java.nio.charset.UnmappableCharacterException

	java.nio.charset.UnsupportedCharsetException

	java.nio.file.AccessDeniedException

	java.nio.file.CopyOption

	java.nio.file.DirectoryIteratorException

	java.nio.file.DirectoryNotEmptyException

	java.nio.file.DirectoryStream

	java.nio.file.DirectoryStream$Filter

	java.nio.file.DirectoryStreamImpl

	java.nio.file.FileAlreadyExistsException

	java.nio.file.FileSystem

	java.nio.file.FileSystemException

	java.nio.file.FileSystemLoopException

	java.nio.file.FileSystemNotFoundException

	java.nio.file.FileSystems

	java.nio.file.FileVisitOption

	java.nio.file.FileVisitResult

	java.nio.file.FileVisitor

	java.nio.file.Files

	java.nio.file.Files$TerminateTraversalException

	java.nio.file.LinkOption

	java.nio.file.NoSuchFileException

	java.nio.file.NotDirectoryException

	java.nio.file.NotLinkException

	java.nio.file.OpenOption

	java.nio.file.Path

	java.nio.file.PathMatcher

	java.nio.file.Paths

	java.nio.file.RegexPathMatcher

	java.nio.file.SimpleFileVisitor

	java.nio.file.StandardCopyOption

	java.nio.file.StandardOpenOption

	java.nio.file.StandardWatchEventKinds

	java.nio.file.WatchEvent

	java.nio.file.WatchEvent$Kind

	java.nio.file.WatchEvent$Modifier

	java.nio.file.WatchKey

	java.nio.file.WatchService

	java.nio.file.Watchable

	java.nio.file.attribute.AclEntry

	java.nio.file.attribute.AclFileAttributeView

	java.nio.file.attribute.AttributeView

	java.nio.file.attribute.BasicFileAttributeView

	java.nio.file.attribute.BasicFileAttributes

	java.nio.file.attribute.DosFileAttributeView

	java.nio.file.attribute.DosFileAttributes

	java.nio.file.attribute.FileAttribute

	java.nio.file.attribute.FileAttributeView

	java.nio.file.attribute.FileOwnerAttributeView

	java.nio.file.attribute.FileStoreAttributeView

	java.nio.file.attribute.FileTime

	java.nio.file.attribute.GroupPrincipal

	java.nio.file.attribute.PosixFileAttributeView

	java.nio.file.attribute.PosixFileAttributes

	java.nio.file.attribute.PosixFilePermission

	java.nio.file.attribute.PosixFilePermissions

	java.nio.file.attribute.UserDefinedFileAttributeView

	java.nio.file.attribute.UserPrincipal

	java.nio.file.attribute.UserPrincipalLookupService

	java.nio.file.attribute.UserPrincipalNotFoundException

	java.nio.file.spi.FileSystemProvider

	java.rmi.Remote

	java.rmi.RemoteException

	java.security.AccessControlException

	java.security.CodeSigner

	java.security.DummyMessageDigest

	java.security.GeneralSecurityException

	java.security.MessageDigest

	java.security.MessageDigestSpi

	java.security.NoSuchAlgorithmException

	java.security.Principal

	java.security.Timestamp

	java.security.TimestampConstructorHelper

	java.security.cert.CertPath

	java.security.cert.Certificate

	java.security.cert.CertificateEncodingException

	java.security.cert.CertificateException

	java.security.cert.CertificateFactory

	java.security.cert.X509Certificate

	java.security.cert.X509Extension

	java.util.AbstractCollection

	java.util.AbstractList

	java.util.AbstractListView

	java.util.AbstractMap

	java.util.AbstractMap$SimpleEntry

	java.util.AbstractMap$SimpleImmutableEntry

	java.util.AbstractQueue

	java.util.AbstractRandomAccessListIterator

	java.util.AbstractSequentialList

	java.util.AbstractSet

	java.util.ArrayDeque

	java.util.ArrayList

	java.util.Arrays

	java.util.Arrays$AsRef

	java.util.BackedUpListIterator

	java.util.Base64

	java.util.Base64$Decoder

	java.util.Base64$DecodingInputStream

	java.util.Base64$Encoder

	java.util.Base64$EncodingOutputStream

	java.util.Base64$Wrapper

	java.util.Calendar

	java.util.Collection

	java.util.Collections

	java.util.Collections$CheckedCollection

	java.util.Collections$CheckedList

	java.util.Collections$CheckedListIterator

	java.util.Collections$CheckedMap

	java.util.Collections$CheckedSet

	java.util.Collections$CheckedSortedMap

	java.util.Collections$CheckedSortedSet

	java.util.Collections$EmptyIterator

	java.util.Collections$EmptyListIterator

	java.util.Collections$ImmutableList

	java.util.Collections$ImmutableMap

	java.util.Collections$ImmutableSet

	java.util.Collections$UnmodifiableCollection

	java.util.Collections$UnmodifiableIterator

	java.util.Collections$UnmodifiableList

	java.util.Collections$UnmodifiableListIterator

	java.util.Collections$UnmodifiableMap

	java.util.Collections$UnmodifiableSet

	java.util.Collections$UnmodifiableSortedMap

	java.util.Collections$UnmodifiableSortedSet

	java.util.Collections$WrappedCollection

	java.util.Collections$WrappedEquals

	java.util.Collections$WrappedIterator

	java.util.Collections$WrappedList

	java.util.Collections$WrappedListIterator

	java.util.Collections$WrappedMap

	java.util.Collections$WrappedSet

	java.util.Collections$WrappedSortedMap

	java.util.Collections$WrappedSortedSet

	java.util.Comparator

	java.util.ConcurrentModificationException

	java.util.Date

	java.util.Deque

	java.util.Dictionary

	java.util.DuplicateFormatFlagsException

	java.util.EmptyStackException

	java.util.EnumSet

	java.util.Enumeration

	java.util.FormatFlagsConversionMismatchException

	java.util.Formattable

	java.util.FormattableFlags

	java.util.Formatter

	java.util.Formatter$BigDecimalLayoutForm

	java.util.FormatterClosedException

	java.util.GregorianCalendar

	java.util.HashMap

	java.util.HashSet

	java.util.Hashtable

	java.util.Hashtable$UnboxedEntry$1

	java.util.IdentityHashMap

	java.util.IllegalFormatCodePointException

	java.util.IllegalFormatConversionException

	java.util.IllegalFormatException

	java.util.IllegalFormatFlagsException

	java.util.IllegalFormatPrecisionException

	java.util.IllegalFormatWidthException

	java.util.IllformedLocaleException

	java.util.InputMismatchException

	java.util.InvalidPropertiesFormatException

	java.util.Iterator

	java.util.LinkedHashMap

	java.util.LinkedHashSet

	java.util.LinkedList

	java.util.List

	java.util.ListIterator

	java.util.Map

	java.util.Map$Entry

	java.util.MissingFormatArgumentException

	java.util.MissingFormatWidthException

	java.util.MissingResourceException

	java.util.NavigableMap

	java.util.NavigableSet

	java.util.NavigableView

	java.util.NoSuchElementException

	java.util.Objects

	java.util.PriorityQueue

	java.util.PriorityQueue$BoxOrdering

	java.util.Properties

	java.util.Queue

	java.util.Random

	java.util.RandomAccess

	java.util.RandomAccessListIterator

	java.util.ServiceConfigurationError

	java.util.Set

	java.util.SizeChangeEvent

	java.util.SortedMap

	java.util.SortedSet

	java.util.StringTokenizer

	java.util.TimeZone

	java.util.TooManyListenersException

	java.util.TreeSet

	java.util.TreeSet$BoxOrdering

	java.util.UUID

	java.util.UnknownFormatConversionException

	java.util.UnknownFormatFlagsException

	java.util.WeakHashMap

	java.util.concurrent.Callable

	java.util.concurrent.CancellationException

	java.util.concurrent.ConcurrentLinkedQueue

	java.util.concurrent.ExecutionException

	java.util.concurrent.Executor

	java.util.concurrent.RejectedExecutionException

	java.util.concurrent.TimeUnit

	java.util.concurrent.TimeoutException

	java.util.concurrent.atomic.AtomicBoolean

	java.util.concurrent.atomic.AtomicInteger

	java.util.concurrent.atomic.AtomicLong

	java.util.concurrent.atomic.AtomicLongArray

	java.util.concurrent.atomic.AtomicReference

	java.util.concurrent.atomic.AtomicReferenceArray

	java.util.concurrent.locks.AbstractOwnableSynchronizer

	java.util.concurrent.locks.AbstractQueuedSynchronizer

	java.util.function.BiConsumer

	java.util.function.BiFunction

	java.util.function.BiPredicate

	java.util.function.BinaryOperator

	java.util.function.Consumer

	java.util.function.Function

	java.util.function.Predicate

	java.util.function.Supplier

	java.util.function.UnaryOperator

	java.util.jar.Attributes

	java.util.jar.Attributes$Name

	java.util.jar.InitManifest

	java.util.jar.JarEntry

	java.util.jar.JarFile

	java.util.jar.JarInputStream

	java.util.jar.JarOutputStream

	java.util.jar.Manifest

	java.util.regex.MatchResult

	java.util.regex.Matcher

	java.util.regex.Pattern

	java.util.regex.PatternSyntaxException

	java.util.stream.BaseStream

	java.util.stream.CompositeStream

	java.util.stream.EmptyIterator

	java.util.stream.Stream

	java.util.stream.Stream$Builder

	java.util.zip.Adler32

	java.util.zip.CRC32

	java.util.zip.CheckedInputStream

	java.util.zip.CheckedOutputStream

	java.util.zip.Checksum

	java.util.zip.DataFormatException

	java.util.zip.Deflater

	java.util.zip.DeflaterOutputStream

	java.util.zip.GZIPInputStream

	java.util.zip.GZIPOutputStream

	java.util.zip.Inflater

	java.util.zip.InflaterInputStream

	java.util.zip.ZipConstants

	java.util.zip.ZipEntry

	java.util.zip.ZipException

	java.util.zip.ZipFile

	java.util.zip.ZipInputStream

	java.util.zip.ZipOutputStream

Note: This is an ongoing effort, some of the classes listed here might
be partially implemented. Please consult javalib sources [https://github.com/scala-native/scala-native/tree/master/javalib/src/main/scala/java]
for details.

Regular expressions (java.util.regex)

Scala Native implements java.util.regex-compatible API using
Google’s RE2 library [https://github.com/google/re2].
RE2 is not a drop-in replacement for java.util.regex but
handles most common cases well.

Some notes on the implementation:

	The included RE2 implements a Unicode version lower than
the version used in the Scala Native Character class (>= 7.0.0).
The RE2 Unicode version is in the 6.n range. For reference, Java 8
released with Unicode 6.2.0.

The RE2 implemented may not match codepoints added or changed
in later Unicode versions. Similarly, there may be slight differences
for Unicode codepoints with high numeric value between values used by RE2
and those used by the Character class.

	This implementation of RE2 does not support:

	Character classes:

	Unions: [a-d[m-p]]

	Intersections: [a-z&&[^aeiou]]

	Predefined character classes: \h, \H, \v, \V

	Patterns:

	Octal: \0100 - use decimal or hexadecimal instead.

	Two character Hexadecimal: \xFF - use \x00FF instead.

	All alphabetic Unicode: \uBEEF - use hex \xBEEF instead.

	Escape: \e - use \u001B instead.

	Java character function classes:

	\p{javaLowerCase}

	\p{javaUpperCase}

	\p{javaWhitespace}

	\p{javaMirrored}

	Boundary matchers: \G, \R, \Z

	Possessive quantifiers: X?+, X*+, X++, X{n}+,
X{n,}+, X{n,m}+

	Lookaheads: (?=X), (?!X), (?<=X), (?<!X), (?>X)

	Options

	CANON_EQ

	COMMENTS

	LITERAL

	UNICODE_CASE

	UNICODE_CHARACTER_CLASS

	UNIX_LINES

	Patterns to match a Unicode binary property, such as
\p{isAlphabetic} for a codepoint with the ‘alphabetic’ property,
are not supported. Often another pattern \p{isAlpha} may be used
instead, \p{isAlpha} in this case.

	The reference Java 8 regex package does not support certain commonly used
Perl expressions supported by this implementation of RE2. For example,
for named capture groups Java uses the expression “(?<foo>)” while
Perl uses the expression “(?P<foo>)”.

Scala Native java.util.regex methods accept both forms. This extension
is intended to useful but is not strictly Java 8 compliant. Not all RE2
Perl expressions may be exposed in this way.

	The following Matcher methods have a minimal implementation:

	Matcher.hasAnchoringBounds() - always return true.

	Matcher.hasTransparentBounds() - always throws
UnsupportedOperationException because RE2 does not support lookaheads.

	Matcher.hitEnd() - always throws UnsupportedOperationException.

	Matcher.region(int, int)

	Matcher.regionEnd()

	Matcher.regionStart()

	Matcher.requireEnd() - always throws UnsupportedOperationException.

	
	Matcher.useAnchoringBounds(boolean) - always throws

	UnsupportedOperationException

	Matcher.useTransparentBounds(boolean) - always throws
UnsupportedOperationException because RE2 does not support lookaheads.

	Scala Native 0.3.8 required POSIX patterns to have the form
[[:alpha:]].
Now the Java standard form \p{Alpha} is accepted and the former variant
pattern is not. This improves compatibility with Java but,
regrettably, may require code changes when upgrading from Scala Native
0.3.8.

Continue to C Standard Library.

C Standard Library

Scala Native provides bindings for a core subset of the
C standard library [https://en.cppreference.com/w/c/header]:

	C Header

	Scala Native Module

	assert.h [https://en.cppreference.com/w/c/error]

	N/A - indicates binding not available

	complex.h [https://en.cppreference.com/w/c/numeric/complex]

	scala.scalanative.libc.complex [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/complex.scala]

	ctype.h [https://en.cppreference.com/w/c/string/byte]

	scala.scalanative.libc.ctype [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/ctype.scala]

	errno.h [https://en.cppreference.com/w/c/error]

	scala.scalanative.libc.errno [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/errno.scala]

	fenv.h [https://en.cppreference.com/w/c/numeric/fenv]

	N/A

	float.h [https://en.cppreference.com/w/c/types/limits#Limits_of_floating_point_types]

	scala.scalanative.libc.float [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/float.scala]

	inttypes.h [https://en.cppreference.com/w/c/types/integer]

	N/A

	iso646.h [https://en.cppreference.com/w/c/language/operator_alternative]

	N/A

	limits.h [https://en.cppreference.com/w/c/types/limits]

	N/A

	locale.h [https://en.cppreference.com/w/c/locale]

	N/A

	math.h [https://en.cppreference.com/w/c/numeric/math]

	scala.scalanative.libc.math [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/math.scala]

	setjmp.h [https://en.cppreference.com/w/c/program]

	N/A

	signal.h [https://en.cppreference.com/w/c/program]

	scala.scalanative.libc.signal [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/signal.scala]

	stdalign.h [https://en.cppreference.com/w/c/types]

	N/A

	stdarg.h [https://en.cppreference.com/w/c/variadic]

	N/A

	stdatomic.h [https://en.cppreference.com/w/c/atomic]

	N/A

	stdbool.h [https://en.cppreference.com/w/c/types/boolean]

	N/A

	stddef.h [https://en.cppreference.com/w/c/types]

	N/A

	stdint.h [https://en.cppreference.com/w/c/types/integer]

	N/A

	stdio.h [https://en.cppreference.com/w/c/io]

	scala.scalanative.libc.stdio [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/stdio.scala]

	stdlib.h [https://en.cppreference.com/w/cpp/header/cstdlib]

	scala.scalanative.libc.stdlib [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/stdlib.scala]

	stdnoreturn.h [https://en.cppreference.com/w/c/types]

	N/A

	string.h [https://en.cppreference.com/w/c/string/byte]

	scala.scalanative.libc.string [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/string.scala]

	tgmath.h [https://en.cppreference.com/w/c/numeric/tgmath]

	N/A

	threads.h [https://en.cppreference.com/w/c/thread]

	N/A

	time.h [https://en.cppreference.com/w/c/chrono]

	N/A

	uchar.h [https://en.cppreference.com/w/c/string/multibyte]

	N/A

	wchar.h [https://en.cppreference.com/w/c/string/wide]

	N/A

	wctype.h [https://en.cppreference.com/w/c/string/wide]

	N/A

Continue to C POSIX Library.

C POSIX Library

Scala Native provides bindings for a core subset of the
POSIX library [https://pubs.opengroup.org/onlinepubs/9699919799/idx/head.html]:

	C Header

	Scala Native Module

	aio.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/aio.h.html]

	N/A - indicates binding not available

	arpa/inet.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/arpa_inet.h.html]

	scala.scalanative.posix.arpa.inet [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/arpa/inet.scala] 1

	assert.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/assert.h.html]

	N/A

	complex.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/complex.h.html]

	scala.scalanative.libc.complex [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/complex.scala]

	cpio.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/cpio.h.html]

	scala.scalanative.posix.cpio [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/cpio.scala]

	ctype.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/ctype.h.html]

	scala.scalanative.libc.ctype [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/ctype.scala]

	dirent.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/dirent.h.html]

	scala.scalanative.posix.dirent [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/dirent.scala]

	dlfcn.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/dlfcn.h.html]

	N/A

	errno.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html]

	scala.scalanative.posix.errno [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/errno.scala]

	fcntl.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/fcntl.h.html]

	scala.scalanative.posix.fcntl [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/fcntl.scala]

	fenv.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/fenv.h.html]

	N/A

	float.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/float.h.html]

	scala.scalanative.libc.float [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/float.scala]

	fmtmsg.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/fmtmsg.h.html]

	N/A

	fnmatch.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/fnmatch.h.html]

	N/A

	ftw.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/ftw.h.html]

	N/A

	getopt.h [https://pubs.opengroup.org/onlinepubs/9699919799/functions/getopt.html]

	scala.scalanative.posix.getopt [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/getopt.scala]

	glob.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/glob.h.html]

	N/A

	grp.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/grp.h.html]

	scala.scalanative.posix.grp [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/grp.scala]

	iconv.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/iconv.h.html]

	N/A

	inttypes.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/inttypes.h.html]

	scala.scalanative.posix.inttypes [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/inttypes.scala]

	iso646.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/iso646.h.html]

	N/A

	langinfo.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/langinfo.h.html]

	N/A

	libgen.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/libgen.h.html]

	N/A

	limits.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/limits.h.html]

	scala.scalanative.posix.limits [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/limits.scala]

	locale.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/locale.h.html]

	N/A

	math.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html]

	scala.scalanative.libc.math [https://github.com/scala-native/scala-native/blob/master/clib/src/main/scala/scala/scalanative/libc/math.scala]

	monetary.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/monetary.h.html]

	N/A

	mqueue.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/mqueue.h.html]

	N/A

	ndbm.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/ndbm.h.html]

	N/A

	net/if.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/net_if.h.html]

	N/A

	netdb.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/netdb.h.html]

	scala.scalanative.posix.netdb [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/netdb.scala]

	netinet/in.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/netinet_in.h.html]

	scala.scalanative.posix.netinet.in [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/netinet/in.scala]

	netinet/tcp.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/netinet_tcp.h.html]

	scala.scalanative.posix.netinet.tcp [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/netinet/tcp.scala]

	nl_types.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/nl_types.h.html]

	N/A

	poll.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/poll.h.html]

	scala.scalanative.posix.poll [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/poll.scala]

	pthread.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html]

	scala.scalanative.posix.pthread [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/pthread.scala]

	pwd.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pwd.h.html]

	scala.scalanative.posix.pwd [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/pwd.scala]

	regex.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/regex.h.html]

	scala.scalanative.posix.regex [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/regex.scala]

	sched.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sched.h.html]

	scala.scalanative.posix.sched [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sched.scala]

	search.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/search.h.html]

	N/A

	semaphore.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/semaphore.h.html]

	N/A

	setjmp.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/setjmp.h.html]

	N/A

	signal.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/signal.h.html]

	scala.scalanative.posix.signal [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/signal.scala]

	spawn.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/spawn.h.html]

	N/A

	stdarg.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdarg.h.html]

	N/A

	stdbool.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdbool.h.html]

	N/A

	stddef.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stddef.h.html]

	N/A

	stdint.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html]

	N/A

	stdio.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdio.h.html]

	N/A

	stdlib.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdlib.h.html]

	scala.scalanative.posix.stdlib [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/stdlib.scala]

	string.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/string.h.html]

	N/A

	strings.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/strings.h.html]

	N/A

	stropts.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stropts.h.html]

	N/A

	sys/ipc.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_ipc.h.html]

	N/A

	sys/mman.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_mman.h.html]

	N/A

	sys/msg.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_msg.h.html]

	N/A

	sys/resource.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_resource.h.html]

	scala.scalanative.posix.sys.resource [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/resource.scala]

	sys/select.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_select.h.html]

	scala.scalanative.posix.sys.select [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/select.scala]

	sys/sem.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_sem.h.html]

	N/A

	sys/shm.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_shm.h.html]

	N/A

	sys/socket.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_socket.h.html]

	scala.scalanative.posix.sys.socket [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/socket.scala]

	sys/stat.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_stat.h.html]

	scala.scalanative.posix.sys.stat [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/stat.scala]

	sys/statvfs.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_statvfs.h.html]

	scala.scalanative.posix.sys.statvfs [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/statvfs.scala]

	sys/time.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_time.h.html]

	scala.scalanative.posix.sys.time [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/time.scala]

	sys/times.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_times.h.html]

	N/A

	sys/types.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_types.h.html]

	scala.scalanative.posix.sys.types [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/types.scala]

	sys/uio.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_uio.h.html]

	scala.scalanative.posix.sys.uio [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/uio.scala]

	sys/un.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_un.h.html]

	N/A

	sys/utsname.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_utsname.h.html]

	scala.scalanative.posix.sys.utsname [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/sys/utsname.scala]

	sys/wait.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_wait.h.html]

	N/A

	syslog.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/syslog.h.html]

	scala.scalanative.posix.syslog [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/syslog.scala]

	tar.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/tar.h.html]

	N/A

	termios.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/termios.h.html]

	scala.scalanative.posix.termios [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/termios.scala]

	tgmath.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/tgmath.h.html]

	N/A

	time.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/time.h.html]

	scala.scalanative.posix.time [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/time.scala]

	trace.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/trace.h.html]

	N/A

	ulimit.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/ulimit.h.html]

	N/A

	unistd.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/unistd.h.html]

	scala.scalanative.posix.unistd [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/unistd.scala]

	utime.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/utime.h.html]

	scala.scalanative.posix.utime [https://github.com/scala-native/scala-native/blob/master/posixlib/src/main/scala/scala/scalanative/posix/utime.scala]

	utmpx.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/utmpx.h.html]

	N/A

	wchar.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/wchar.h.html]

	N/A

	wctype.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/wctype.h.html]

	N/A

	wordexp.h [https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/wordexp.h.html]

	N/A

	1

	The argument to inet_ntoa() differs from the POSIX
specification because Scala Native supports only
passing structures by reference. See code for details
and usage.

Continue to Community Libraries.

Community Libraries

Third-party libraries for Scala Native can be found using:

	Scala Native libraries indexed by MVN Repository [https://mvnrepository.com/artifact/org.scala-native/nativelib/usages].

	Awesome Scala Native [https://github.com/tindzk/awesome-scala-native], a curated list of Scala Native libraries and projects.

Continue to FAQ.

Contributor’s Guide

	Contributing guidelines
	Very important notice about Javalib

	Coding style

	C / POSIX Libraries

	General workflow

	Git workflow

	Pull Request Requirements

	Documentation

	Creating Commits And Writing Commit Messages

	Prepare meaningful commits

	First line of the commit message

	Body of the commit message

	Guide to the sbt build
	Common sbt commands

	Normal development workflow

	Build settings via environment variables

	Setting the GC setting via sbt

	Locally publish to test in other builds

	Organization of the build

	Working with scalalib overrides

	The compiler plugin and code generator
	Tips for working on the compiler

	Native Intermediate Representation
	Introduction

	Definitions

	Types

	Control-Flow

	Operands

	Values

	Attributes

	Name mangling

	IntelliJ IDEA

	Metals

Contributing guidelines

Very important notice about Javalib

Scala Native contains a re-implementation of part of the JDK.

Although the GPL and Scala License are compatible [https://www.gnu.org/licenses/license-list.html#ModifiedBSD] and the GPL and
Scala CLA are compatible [https://www.gnu.org/licenses/license-list.html#apache2], EPFL wish to distribute scala native
under a permissive license.

When you sign the Scala CLA [http://typesafe.com/contribute/cla/scala] you are confirming that your
contributions are your own creation. This is especially important, as
it denies you the ability to copy any source code, e.g. Android,
OpenJDK, Apache Harmony, GNU Classpath or Scala.js. To be clear, you
are personally liable if you provide false information regarding the
authorship of your contribution.

However, we are prepared to accept contributions that include code
copied from Scala.js [https://github.com/scala-js/scala-js/tree/master/javalib/src/main/scala/java] or Apache Harmony project [https://github.com/apache/harmony] on a case-by-case
basis. In such cases, you must fulfill your obligations and include the
relevant copyright / license information.

Coding style

Scala Native is formatted via ./scripts/scalafmt and ./scripts/clangfmt.
Make sure that all of your contributions are properly formatted before
suggesting any changes.

Formatting Scala via scalafmt downloads and runs the correct version and
uses the .scalafmt.conf file at the root of the project. No configuration
is needed.

Formatting C and C++ code uses clang-format which requires LLVM library
dependencies. For clang-format we use the same version as the minimum
version of LLVM and clang. This may not be the version of clang used
for development as most developers will use a newer version. In order
to make this easier we have a environment variable, CLANG_FORMAT_PATH
which can be set to the older version. Another option is to make sure the
correct version of clang-format is available in your path. Refer to
Environment setup for the minimum version to install and use.

The following shows examples for two common operating systems. You may add
the environment variable to your shell startup file for convenience:

macOS

$ export CLANG_FORMAT_PATH=/usr/local/opt/llvm@6/bin/clang-format

Note: Example for brew. Other package managers may use different locations.

Ubuntu

$ export CLANG_FORMAT_PATH=/usr/lib/llvm-6.0/bin/clang-format

The script ./scripts/clangfmt will use the .clang-format file
at the root of the project for settings used in formatting.

C / POSIX Libraries

Both the clib and posixlib have coding styles that are unique
compared to normal Scala coding style. Normal C code is written in
lowercase snake case for function names and uppercase snake case for
macro or pre-processor constants. Here is an example for Scala:

@extern
object cpio {
 @name("scalanative_c_issock")
 def C_ISSOCK: CUnsignedShort = extern

 @name("scalanative_c_islnk")
 def C_ISLNK: CUnsignedShort = extern

The following is the corresponding C file:

#include <cpio.h>

unsigned short scalanative_c_issock() { return C_ISSOCK; }
unsigned short scalanative_c_islnk() { return C_ISLNK; }

Since C has a flat namespace most libraries have prefixes and
in general cannot use the same symbol names so there is no
need to add additional prefixes. For Scala Native we use
scalanative_ as a prefix for functions.

This is the reason C++ added namespaces so that library designer
could have a bit more freedom. The developer, however, still has to
de-conflict duplicate symbols by using the defined namespaces.

General workflow

This the general workflow for contributing to Scala Native.

	Make sure you have signed the Scala CLA [http://typesafe.com/contribute/cla/scala]. If not, sign it.

	You should always perform your work in its own Git branch.
The branch should be given a descriptive name that explains its intent.

	When the feature or fix is completed you should open a Pull Request [https://help.github.com/articles/using-pull-requests]
on GitHub.

	The Pull Request should be reviewed by other maintainers (as many as
feasible/practical), among which at least one core developer.
Independent contributors can also participate in the review process,
and are encouraged to do so.

	After the review, you should resolve issues brought up by the reviewers as
needed (amending or adding commits to address reviewers’ comments),
iterating until the reviewers give their thumbs up, the “LGTM” (acronym for
“Looks Good To Me”).

	Once the code has passed review the Pull Request can be merged into
the distribution.

Git workflow

Scala Native repositories maintain a linear merge-free history on the master
branch. All of the incoming pull requests are merged using squash and merge
policy (i.e. one merged pull request corresponds to one squashed commit to the
master branch.)

You do not need to squash commits manually. It’s typical to add new commits
to the PR branch to accommodate changes that were suggested by the reviewers.
Squashing things manually and/or rewriting history on the PR branch is all-right
as long as it’s clear that concerns raised by reviewers have been addressed.

Maintaining a long-standing work-in-progress (WIP) branch requires one to rebase
on top of latest master using git rebase --onto from time to time.
It’s strongly recommended not to perform any merges on your branches that you
are planning to use as a PR branch.

Pull Request Requirements

In order for a Pull Request to be considered, it has to meet these requirements:

	Live up to the current code standard:

	Be formatted with ./scripts/scalafmt and ./scripts/clangfmt.

	Not violate DRY [http://programmer.97things.oreilly.com/wiki/index.php/Don%27t_Repeat_Yourself].

	Boy Scout Rule [http://programmer.97things.oreilly.com/wiki/index.php/The_Boy_Scout_Rule] should be applied.

	Be accompanied by appropriate tests.

	Be issued from a branch other than master (PRs coming from master will not
be accepted.)

If not all of these requirements are met then the code should not be
merged into the distribution, and need not even be reviewed.

Documentation

All code contributed to the user-facing standard library (the nativelib/
directory) should come accompanied with documentation.
Pull requests containing undocumented code will not be accepted.

Code contributed to the internals (nscplugin, tools, etc.)
should come accompanied by internal documentation if the code is not
self-explanatory, e.g., important design decisions that other maintainers
should know about.

Creating Commits And Writing Commit Messages

Follow these guidelines when creating public commits and writing commit messages.

Prepare meaningful commits

If your work spans multiple local commits (for example; if you do safe point
commits while working in a feature branch or work in a branch for long time
doing merges/rebases etc.) then please do not commit it all but rewrite the
history by squashing the commits into one commit per useful unit of
change, each accompanied by a detailed commit message.
For more info, see the article: Git Workflow [http://sandofsky.com/blog/git-workflow.html].
Additionally, every commit should be able to be used in isolation–that is,
each commit must build and pass all tests.

First line of the commit message

The first line should be a descriptive sentence about what the commit is
doing, written using the imperative style, e.g., “Change this.”, and should
not exceed 70 characters.
It should be possible to fully understand what the commit does by just
reading this single line.
It is not ok to only list the ticket number, type “minor fix” or similar.
If the commit has a corresponding ticket, include a reference to the ticket
number, with the format “Fix #xxx: Change that.”, as the first line.
Sometimes, there is no better message than “Fix #xxx: Fix that issue.”,
which is redundant.
In that case, and assuming that it aptly and concisely summarizes the commit
in a single line, the commit message should be “Fix #xxx: Title of the ticket.”.

Body of the commit message

If the commit is a small fix, the first line can be enough.
Otherwise, following the single line description should be a blank line
followed by details of the commit, in the form of free text, or bulleted list.

Guide to the sbt build

This section gives some basic information and tips about the build system. The
sbt build system is quite complex and effectively brings together all the
components of Scala Native. The build.sbt file is at the root of the project
along with the sub-projects that make up the system.

Common sbt commands

Once you have cloned Scala Native from git, cd into the base directory and
run sbt to launch the sbt build. Inside the sbt shell, the most common
commands are the following:

	sandbox/run – run the main method of the sandbox project

	tests/test – run the unit tests

	tools/test – run the unit tests of the tools, aka the linker

	sbtScalaNative/scripted – run the integration tests of the sbt plugin
(this takes a while)

	clean – delete all generated sources, compiled artifacts, intermediate
products, and generally all build-produced files

	reload – reload the build, to take into account changes to the sbt plugin
and its transitive dependencies

If you want to run all the tests and benchmarks, which takes a while, you can
run the test-all command, ideally after reload and clean.

Normal development workflow

Let us suppose that you wish to work on the javalib project to add some code
or fix a bug. Once you make a change to the code, run the following command
at the sbt prompt to compile the code and run the tests:

> tests/test

You can run only the test of interest by using one of the following commands:

> tests/testOnly java.lang.StringSuite
> tests/testOnly *StringSuite

Scripted tests are used when you need to interact with the file system,
networking, or the build system that cannot be done with a unit test. They
are located in the scripted-tests directory.

Run all the scripted tests or just one test using the following examples respectively.
To run an individual test substitute the test to run for native-code-include:

> sbtScalaNative/scripted
> sbtScalaNative/scripted run/native-code-include

Some additional tips are as follows.

	If you modify the nscplugin, you will need to clean the project that
you want to rebuild with its new version (typically sandbox/clean or
tests/clean). For a full rebuild, use the global clean command.

	If you modify the sbt plugin or any of its transitive dependencies
(sbt-scala-native, nir, util, tools, test-runner), you
will need to reload for your changes to take effect with most test
commands (except with the scripted tests).

	For a completely clean build, from scratch, run reload and clean.

Build settings via environment variables

Two build settings, nativeGC and nativeMode can be changed via
environment variables. They have default settings that are used unless
changed. The setting that controls the garbage collector is nativeGC.
Scala Native has a high performance Garbage Collector (GC) immix
that comes with the system or the boehm GC which can be used when
the supporting library is installed. The setting none also exists for a
short running script or where memory is not an issue.

Scala Native uses Continuous integration (CI) to compile and test the code on
different platforms 1 and using different garbage collectors 2.
The Scala Native sbt plugin includes the ability to set an environment
variable SCALANATIVE_GC to set the garbage collector value used by sbt.
Setting this as follows will set the value in the plugin when sbt is run.

$ export SCALANATIVE_GC=immix
$ sbt
> show nativeGC

This setting remains unless changed at the sbt prompt. If changed, the value
will be restored to the environment variable value if sbt is restarted or
reload is called at the sbt prompt. You can also revert to the default
setting value by running unset SCALANATIVE_GC at the command line
and then restarting sbt.

The nativeMode setting is controlled via the SCALANATIVE_MODE environment
variable. The default mode, debug is designed to optimize but compile fast
whereas the release mode performs additional optimizations and takes longer
to compile. The release-fast mode builds faster, performs less optimizations,
but may perform better than release.

The optimize setting is controlled via the SCALANATIVE_OPTIMIZE environment
variable. Valid values are true and false. The default value is true.
This setting controls whether the Interflow optimizer is enabled or not.

The path to used include and library dirs is controlled via environment variables
the SCALANATIVE_INCLUDE_DIRS and SCALANATIVE_LIB_DIRS.

Setting the GC setting via sbt

The GC setting is only used during the link phase of the Scala Native
compiler so it can be applied to one or all the Scala Native projects
that use the sbtScalaNative plugin. This is an example to only change the
setting for the sandbox.

$ sbt
> show nativeGC
> set nativeGC in sandbox := "none"
> show nativeGC
> sandbox/run

The following shows how to set nativeGC on all the projects.

> set every nativeGC := "immix"
> show nativeGC

The same process above will work for setting nativeMode.

Locally publish to test in other builds

If you need to test your copy of Scala Native in the larger context of a
separate build, you will need to locally publish all the artifacts of Scala
Native.

Use the special script that publishes all the cross versions:

$ scripts/publish-local

Afterwards, set the version of sbt-scala-native in the target project’s
project/plugins.sbt to the current SNAPSHOT version of Scala Native, and use
normally.

Organization of the build

The build has roughly five groups of sub-projects as follows:

	The compiler plugin, which generates NIR files. It is used in all the
Scana Native artifacts in the build, with
.dependsOn(nscplugin % "plugin"). This is a JVM project.

	nscplugin

	The Scala Native core libraries. Those are core artifacts which the sbt
plugin adds to the Compile configuration of all Scala Native projects.
The libraries in this group are themselves Scala Native projects. Projects
further in the list depend on projects before them.

	nativelib

	clib

	posixlib

	javalib

	auxlib

	scalalib

	The Scala Native sbt plugin and its dependencies (directory names are in
parentheses). These are JVM projects.

	sbtScalaNative (sbt-scala-native)

	tools

	nir, util

	testRunner (test-runner)

	The Scala Native test interface and its dependencies. The sbt plugin adds
them to the Test configuration of all Scala Native projects. These are
Scala Native projects.

	testInterface (test-interface)

	testInterfaceSbtDefs (test-interface-sbt-defs)

	Tests and benchmarks (no dependencies on each other).

	tests (unit-tests) (Scala Native project)

	tools This has tests within the project (JVM project)

	(scripted-tests) (JVM project)

	External tests and its dependencies. Sources of these tests are not stored
in this project, but fetched from external sources, e.g.: Scala compiler repository.
Sources in this project define interface used by Scala Native and tests filters.

	scalaPartest (scala-partest) (JVM project, uses Scala Native artifacts)

	scalaPartestRuntime (scala-partest-runtime) (Scala native project)

	scalaPartestTests (scala-partest-tests) (JVM project)

	scalaPartestJunitTests (scala-partest-junit-tests) (Scala Native project)

	JUnit plugin, its tests and dependencies. Following sources define JUnit compiler
for Scala Native and its runtime, as well as compliance tests and internal stubs.

	junitPlugin (junit-plugin)

	junitRuntime (junit-runtime)

	junitTestOutputsJVM (junit-test/output-jvm)

	junitTestOutputsNative (junit-test/output-native)

	junitAsyncJVM (junit-async/jvm)

	junitAsyncNative (junit-async/native)

Apart from those mentioned sub-projects it is possible to notice project-like directory testInterfaceCommon (test-interface-common).
Its content is shared as unmanaged source dependency between JVM and Native sides of test interface.

Working with scalalib overrides

Scalalib project does not introduce any new classes but provides overrides
for the existing Scala standard library. Some of these overrides exist to improve
the performance of Scala Native, eg. by explicit inlining of some methods.
When running scalalib/compile it will automatically use existing *.scala files defined in overrides directories. To reduce the number of changes between overrides and
original Scala sources, we have introduced a patching mechanism.
Each file defined with the name *.scala.patch contains generated patch, which would be applied
onto source defined for the current Scala version inside its standard library.
In case overrides* directory contains both *.scala file and its corresponding patch file,
only *.scala file would be added to the compilation sources.

To operate with patches it is recommended to use Ammonite script scripts/scalalib-patch-tool.sc.
It takes 2 mandatory arguments: command to use and Scala version. There are currently 3 supported commands defined:
* recreate - creates *.scala files based on original sources with applied patches corresponding to their name;
* create - creates *.scala.patch files from defined *.scala files in overrides directory with corresponding name;
* prune - deletes all *.scala files which does not have corresponding *.scala.patch file;

Each of these commands is applied to all files defined in the overrides directory.
By default override directory is selected based on the used scala version,
if it’s not the present script will try to use directory with corresponding Scala binary version,
or it would try to use Scala epoch version or overrides directory. If none of these directories exists it will fail.
It is also possible to define explicitly overrides directory to use by passing it as the third argument to the script.

The next section has more build and development information for those wanting
to work on The compiler plugin and code generator.

	1

	http://www.scala-native.org/en/latest/user/setup.html

	2

	http://www.scala-native.org/en/latest/user/sbt.html

The compiler plugin and code generator

Compilation to native code happens in two steps. First, Scala code is compiled
into Native Intermediate Representation by nscplugin, the Scala compiler plugin. It runs as one of the
later phases of the Scala compiler and inspects the AST and generates .nir
files. Finally, the .nir files are compiled into .ll files and passed
to LLVM by the native compiler.

[image: ../_images/compilation.png]

High-level overview of the compilation process.

Tips for working on the compiler

When adding a new intrinsic, the first thing to check is how clang would compile
it in C. Write a small program with the behavior you are trying to add and
compile it to .ll using:

clang -S -emit-llvm foo.c

Now write the equivalent Scala code for the new intrinsic in the sandbox project.
This project contains a minimal amount of code and has all the toolchain set up
which makes it fast to iterate and inspect the output of the compilation.

To compile the sandbox project run the following in the sbt shell:

sbt> sandbox/clean;sandbox/nativeLink

After compiling the sandbox project you can inspect the .ll files inside
sandbox/target/scala-<version>/ll. The files are grouped by the package name.
By default the Test.scala file doesn’t define a package, so the resulting file
will be __empty.ll. Locating the code you are interested in might require that
you get more familiar with the LLVM assembly language [http://llvm.org/docs/LangRef.html].

When working on the compiler plugin you’ll need to clean the sandbox (or other
Scala Native projects) if you want it to be recompiled with the newer version
of the compiler plugin. This can be achieved with:

sbt> sandbox/clean;sandbox/run

Certain intrinsics might require adding new primitives to the compiler plugin.
This can be done in NirPrimitives with an accompanying definition in
NirDefinitions. Ensure that new primitives are correctly registered.

The NIR code generation uses a builder to maintain the generated instructions.
This allows to inspect the instructions before and after the part of the compilation
you are working on has generated code.

Native Intermediate Representation

NIR is high-level object-oriented SSA-based representation. The core of the
representation is a subset of LLVM instructions, types and values, augmented
with a number of high-level primitives that are necessary to
efficiently compile modern languages like Scala.

Contents

	Native Intermediate Representation

	Introduction

	Definitions

	Var

	Const

	Declare

	Define

	Struct

	Trait

	Class

	Module

	Types

	Void

	Vararg

	Pointer

	Boolean

	Integer

	Float

	Array

	Function

	Struct

	Unit

	Nothing

	Class

	Trait

	Module

	Control-Flow

	unreachable

	ret

	jump

	if

	switch

	invoke

	throw

	try

	Operands

	call

	load

	store

	elem

	extract

	insert

	stackalloc

	bin

	comp

	conv

	sizeof

	classalloc

	field

	method

	dynmethod

	as

	is

	Values

	Boolean

	Zero and null

	Integer

	Float

	Struct

	Array

	Local

	Global

	Unit

	Null

	String

	Attributes

	Inlining

	mayinline

	inlinehint

	noinline

	alwaysinline

	Linking

	link

	pin

	pin-if

	pin-weak

	stub

	Misc

	dyn

	pure

	extern

	override

Introduction

Lets have a look at the textual form of NIR generated for a simple Scala module:

object Test {
 def main(args: Array[String]): Unit =
 println("Hello, world!")
}

Would map to:

pin(@Test$::init) module @Test$: @java.lang.Object

def @Test$::main_class.ssnr.ObjectArray_unit : (module @Test$, class @scala.scalanative.runtime.ObjectArray) => unit {
 %src.2(%src.0 : module @Test$, %src.1 : class @scala.scalanative.runtime.ObjectArray):
 %src.3 = module @scala.Predef$
 %src.4 = method %src.3 : module @scala.Predef$, @scala.Predef$::println_class.java.lang.Object_unit
 %src.5 = call[(module @scala.Predef$, class @java.lang.Object) => unit] %src.4 : ptr(%src.3 : module @scala.Predef$, "Hello, world!")
 ret %src.5 : unit
}

def @Test$::init : (module @Test$) => unit {
 %src.1(%src.0 : module @Test$):
 %src.2 = call[(class @java.lang.Object) => unit] @java.lang.Object::init : ptr(%src.0 : module @Test$)
 ret unit
}

Here we can see a few distinctive features of the representation:

	At its core NIR is very much a classical SSA-based representation.
The code consists of basic blocks of instructions. Instructions take
value and type parameters. Control flow instructions can only appear
as the last instruction of the basic block.

	Basic blocks have parameters. Parameters directly correspond to phi
instructions in the classical SSA.

	The representation is strongly typed. All parameters have explicit type
annotations. Instructions may be overloaded for different types via type
parameters.

	Unlike LLVM, it has support for high-level object-oriented features such as
garbage-collected classes, traits and modules. They may contain methods and
fields. There is no overloading or access control modifiers so names must be
mangled appropriately.

	All definitions live in a single top-level scope indexed by globally
unique names. During compilation they are lazily loaded until all
reachable definitions have been discovered. pin and pin-if attributes
are used to express additional dependencies.

Definitions

Var

..$attrs var @$name: $ty = $value

Corresponds to LLVM’s global variables [http://llvm.org/docs/LangRef.html#global-variables]
when used in the top-level scope and to fields, when used as a member of
classes and modules.

Const

..$attrs const @$name: $type = $value

Corresponds to LLVM’s global constant [http://llvm.org/docs/LangRef.html#global-variables].
Constants may only reside on the top-level and can not be members of classes and
modules.

Declare

..$attrs def @$name: $type

Correspond to LLVM’s
declare [http://llvm.org/docs/LangRef.html#functions]
when used on the top-level of the compilation unit and
to abstract methods when used inside classes and traits.

Define

..$attrs def @$name: $type { ..$blocks }

Corresponds to LLVM’s
define [http://llvm.org/docs/LangRef.html#functions]
when used on the top-level of the compilation unit and
to normal methods when used inside classes, traits and modules.

Struct

..$attrs struct @$name { ..$types }

Corresponds to LLVM’s
named struct [http://llvm.org/docs/LangRef.html#structure-types].

Trait

..$attrs trait @$name : ..$traits

Scala-like traits. May contain abstract and concrete methods as members.

Class

..$attrs class @$name : $parent, ..$traits

Scala-like classes. May contain vars, abstract and concrete methods as members.

Module

..$attrs module @$name : $parent, ..$traits

Scala-like modules (i.e. object $name) May only contain vars and concrete
methods as members.

Types

Void

void

Corresponds to LLVM’s void [http://llvm.org/docs/LangRef.html#void-type].

Vararg

...

Corresponds to LLVM’s varargs [http://www.llvm.org/docs/LangRef.html#function-type].
May only be nested inside function types.

Pointer

ptr

Corresponds to LLVM’s pointer type [http://llvm.org/docs/LangRef.html#pointer-type]
with a major distinction of not preserving the type of memory that’s being
pointed at. Pointers are going to become untyped in LLVM in near future too.

Boolean

bool

Corresponds to LLVM’s i1 [http://llvm.org/docs/LangRef.html#integer-type].

Integer

i8
i16
i32
i64

Corresponds to LLVM integer types [http://llvm.org/docs/LangRef.html#integer-type].
Unlike LLVM we do not support arbitrary width integer types at the moment.

Float

f32
f64

Corresponds to LLVM’s floating point types [http://llvm.org/docs/LangRef.html#floating-point-types].

Array

[$type x N]

Corresponds to LLVM’s aggregate array type [http://llvm.org/docs/LangRef.html#array-type].

Function

(..$args) => $ret

Corresponds to LLVM’s function type [http://llvm.org/docs/LangRef.html#function-type].

Struct

struct @$name
struct { ..$types }

Has two forms: named and anonymous. Corresponds to LLVM’s
aggregate structure type [http://www.llvm.org/docs/LangRef.html#t-struct].

Unit

unit

A reference type that corresponds to scala.Unit.

Nothing

nothing

Corresponds to scala.Nothing. May only be used a function return type.

Class

class @$name

A reference to a class instance.

Trait

trait @$name

A reference to a trait instance.

Module

module @$name

A reference to a module.

Control-Flow

unreachable

unreachable

If execution reaches undefined instruction the behaviour of execution is undefined
starting from that point. Corresponds to LLVM’s
unreachable [http://llvm.org/docs/LangRef.html#unreachable-instruction].

ret

ret $value

Returns a value. Corresponds to LLVM’s
ret [http://llvm.org/docs/LangRef.html#ret-instruction].

jump

jump $next(..$values)

Jumps to the next basic block with provided values for the parameters.
Corresponds to LLVM’s unconditional version of
br [http://llvm.org/docs/LangRef.html#br-instruction].

if

if $cond then $next1(..$values1) else $next2(..$values2)

Conditionally jumps to one of the basic blocks.
Corresponds to LLVM’s conditional form of
br [http://llvm.org/docs/LangRef.html#br-instruction].

switch

switch $value {
 case $value1 => $next1(..$values1)
 ...
 default => $nextN(..$valuesN)
}

Jumps to one of the basic blocks if $value is equal to
corresponding $valueN. Corresponds to LLVM’s
switch [http://llvm.org/docs/LangRef.html#switch-instruction].

invoke

invoke[$type] $ptr(..$values) to $success unwind $failure

Invoke function pointer, jump to success in case value is returned,
unwind to failure if exception was thrown. Corresponds to LLVM’s
invoke [http://llvm.org/docs/LangRef.html#invoke-instruction].

throw

throw $value

Throws the values and starts unwinding.

try

try $succ catch $failure

Operands

All non-control-flow instructions follow a general pattern of
%$name = $opname[..$types] ..$values. Purely side-effecting operands
like store produce unit value.

call

call[$type] $ptr(..$values)

Calls given function of given function type and argument values.
Corresponds to LLVM’s
call [http://llvm.org/docs/LangRef.html#call-instruction].

load

load[$type] $ptr

Load value of given type from memory. Corresponds to LLVM’s
load [http://llvm.org/docs/LangRef.html#load-instruction].

store

store[$type] $ptr, $value

Store value of given type to memory. Corresponds to LLVM’s
store [http://llvm.org/docs/LangRef.html#store-instruction].

elem

elem[$type] $ptr, ..$indexes

Compute derived pointer starting from given pointer. Corresponds to LLVM’s
getelementptr [http://llvm.org/docs/LangRef.html#getelementptr-instruction].

extract

extract[$type] $aggrvalue, $index

Extract element from aggregate value.
Corresponds to LLVM’s
extractvalue [http://llvm.org/docs/LangRef.html#extractvalue-instruction].

insert

insert[$type] $aggrvalue, $value, $index

Create a new aggregate value based on existing one with element at index
replaced with new value. Corresponds to LLVM’s
insertvalue [http://llvm.org/docs/LangRef.html#insertvalue-instruction].

stackalloc

stackalloc[$type]

Stack allocate a slot of memory big enough to store given type.
Corresponds to LLVM’s
alloca [http://llvm.org/docs/LangRef.html#alloca-instruction].

bin

$bin[$type] $value1, $value2`

Where $bin is one of the following:
iadd, fadd, isub, fsub, imul, fmul,
sdiv, udiv, fdiv, srem, urem, frem,
shl, lshr, ashr , and, or, xor.
Depending on the type and signedness, maps to either integer or floating point
binary operations [http://llvm.org/docs/LangRef.html#binary-operations] in LLVM.

comp

$comp[$type] $value1, $value2

Where $comp is one of the following: eq, neq, lt, lte,
gt, gte. Depending on the type, maps to either
icmp [http://llvm.org/docs/LangRef.html#icmp-instruction] or
fcmp [http://llvm.org/docs/LangRef.html#fcmp-instruction] with
corresponding comparison flags in LLVM.

conv

$conv[$type] $value

Where $conv is one of the following: trunc, zext, sext, fptrunc,
fpext, fptoui, fptosi, uitofp, sitofp, ptrtoint, inttoptr,
bitcast.
Corresponds to LLVM
conversion instructions [http://llvm.org/docs/LangRef.html#conversion-operations]
with the same name.

sizeof

sizeof[$type]

Returns a size of given type.

classalloc

classalloc @$name

Roughly corresponds to new $name in Scala.
Performs allocation without calling the constructor.

field

field[$type] $value, @$name

Returns a pointer to the given field of given object.

method

method[$type] $value, @$name

Returns a pointer to the given method of given object.

dynmethod

dynmethod $obj, $signature

Returns a pointer to the given method of given object and signature.

as

as[$type] $value

Corresponds to $value.asInstanceOf[$type] in Scala.

is

is[$type] $value

Corresponds to $value.isInstanceOf[$type] in Scala.

Values

Boolean

true
false

Corresponds to LLVM’s true and false.

Zero and null

null
zero $type

Corresponds to LLVM’s null and zeroinitializer.

Integer

Ni8
Ni16
Ni32
Ni64

Correponds to LLVM’s integer values.

Float

N.Nf32
N.Nf64

Corresponds to LLVM’s floating point values.

Struct

struct @$name {..$values}`

Corresponds to LLVM’s struct values.

Array

array $ty {..$values}

Corresponds to LLVM’s array value.

Local

%$name

Named reference to result of previously executed
instructions or basic block parameters.

Global

@$name

Reference to the value of top-level definition.

Unit

unit

Corresponds to () in Scala.

Null

null

Corresponds to null literal in Scala.

String

"..."

Corresponds to string literal in Scala.

Attributes

Attributes allow one to attach additional metadata to definitions and instructions.

Inlining

mayinline

mayinline

Default state: optimiser is allowed to inline given method.

inlinehint

inlinehint

Optimiser is incentivized to inline given methods but it is allowed not to.

noinline

noinline

Optimiser must never inline given method.

alwaysinline

alwaysinline

Optimiser must always inline given method.

Linking

link

link($name)

Automatically put $name on a list of native libraries to link with if the
given definition is reachable.

pin

pin(@$name)

Require $name to be reachable, whenever current definition is reachable.
Used to introduce indirect linking dependencies. For example, module definitions
depend on its constructors using this attribute.

pin-if

pin-if(@$name, @$cond)

Require $name to be reachable if current and $cond definitions are
both reachable. Used to introduce conditional indirect linking dependencies.
For example, class constructors conditionally depend on methods overridden in
given class if the method that are being overridden are reachable.

pin-weak

pin-weak(@$name)

Require $name to be reachable if there is a reachable dynmethod with matching signature.

stub

stub

Indicates that the annotated method, class or module is only a stub without implementation.
If the linker is configured with linkStubs = false, then these definitions will be
ignored and a linking error will be reported. If linkStubs = true, these definitions
will be linked.

Misc

dyn

dyn

Indication that a method can be called using a structural type dispatch.

pure

pure

Let optimiser assume that calls to given method are effectively pure.
Meaning that if the same method is called twice with exactly the same argument
values, it can re-use the result of first invocation without calling the method
twice.

extern

extern

Use C-friendly calling convention and don’t name-mangle given method.

override

override(@$name)

Attributed method overrides @$name method if @$name is reachable.
$name must be defined in one of the super classes or traits of
the parent class.

Name mangling

Scala Native toolchain mangles names for all definitions except
the ones which have been explicitly exported to C using
extern. Mangling scheme is defined through a simple grammar
that uses a notation inspired by
Itanium ABI [http://refspecs.linuxbase.org/cxxabi-1.83.html]:

<mangled-name> ::=
 _S <defn-name>

<defn-name> ::=
 T <name> // top-level name
 M <name> <sig-name> // member name

<sig-name> ::=
 F <name> <scope> // field name
 R <type-name>+ E // constructor name
 D <name> <type-name>+ E <scope> // method name
 P <name> <type-name>+ E // proxy name
 C <name> // c extern name
 G <name> // generated name
 K <sig-name> <type-name>+ E // duplicate name

<type-name> ::=
 v // c vararg
 R _ // c pointer type-name
 R <type-name>+ E // c function type-name
 S <type-name>+ E // c anonymous struct type-name
 A <type-name> <number> _ // c array type-name
 <integer-type-name> // signed integer type-name
 z // scala.Boolean
 c // scala.Char
 f // scala.Float
 d // scala.Double
 u // scala.Unit
 l // scala.Null
 n // scala.Nothing
 L <nullable-type-name> // nullable type-name
 A <type-name> _ // nonnull array type-name
 X <name> // nonnull exact class type-name
 <name> // nonnull class type-name

<nullable-type-name> ::=
 A <type-name> _ // nullable array type-name
 X <name> // nullable exact class type-name
 <name> // nullable class type-name

<integer-type-name> ::=
 b // scala.Byte
 s // scala.Short
 i // scala.Int
 j // scala.Long

<scope> ::=
 P <defn-name> // private to defn-name
 O // public

<name> ::=
 <length number> [-] <chars> // raw identifier of given length; `-` separator is only used when <chars> starts with digit or `-` itself

Mangling identifiers containing special characters follows Scala JVM conventions.
Each double-quote “ character is always converted to $u0022

IntelliJ IDEA

	Select “Create project from existing sources” and choose the build.sbt file. When prompted, select “Open as project”. Make sure you select the “Use sbt shell” for both import and build.

	When the import is complete, we need to fix some module dependencies:

	scalalib: Right-click on the module, “Mark directory as” -> “Excluded”. This is needed because scalalib is only meant to be used at runtime (it is the Scala library that the executables link against). Not excluding it makes IDEA think that the Scala library comes from it, which results into highlighting errors.

	nscplugin: We need to add what SBT calls unmanagedSourceDirectories as dependencies. Go go Project Structure -> Modules -> nscplugin -> Dependencies and click the + icon. Select “JARs or Directories” and navigate to the nir directory at the root of the Scala Native project. Repeat for the util directory.

	native-build: We need to add the sbt-scala-native module as a dependency. Go go Project Structure -> Modules -> native-build -> Dependencies and click the + icon. Select “Module Dependency” and select the sbt-scala-native module.

The above is not an exhaustive list, but it is the bare minimum to have the build working. Please keep in mind that you will have to repeat the above steps, in case you reload (re-import) the SBT build. This will need to happen if you change some SBT-related file (e.g. build.sbt).

Metals

Metals import should work out of the box for most of the modules.

Blog

	Interflow: Scala Native’s upcoming flow-sensitive, profile-guided optimizer
	The Interflow Optimizer

	Evaluation

	Conclusion

Interflow: Scala Native’s upcoming flow-sensitive, profile-guided optimizer

June 16, 2018.

This post provides a sneak peak at Interflow, an upcoming optimizer for Scala Native. For more details, see our publication preprint [https://github.com/densh/talks/blob/master/2018-06-16-interflow-preprint-v1.pdf].

The Interflow Optimizer

Scala Native relies on LLVM [https://llvm.org/] as its primary optimizer as of the latest 0.3.7 release. Overall, we’ve found that LLVM fits this role quite well, after all, it is an industry-standard toolchain for AOT compilation of statically typed programming languages. LLVM produces high-quality native code, and the results are getting better with each release.

However, we have also found that LLVM intermediate representation [https://llvm.org/docs/LangRef.html] is sometimes too low-level for the Scala programming language. For example, it does not have direct support for object-oriented features such as classes, allocations, virtual calls on them, instance checks, casts, etc. We encode all of those features by lowering them into equivalent code using C-like abstractions LLVM provides us. As a side effect of this lossy conversion, some of the optimization opportunities are irreversibly lost.

To address the abstraction gap between Scala’s high-level features and LLVM’s low-level representation, we developed our own interprocedural, flow-sensitive optimizer called Interflow. It operates on the Scala Native’s intermediate representation called NIR [http://www.scala-native.org/en/latest/contrib/nir.html]. Unlike LLVM IR, it preserves full information about object-oriented features.

Interflow fuses following static optimizations in a single optimization pass:

	Flow-sensitive type inference. Interflow discards most of the original type information ascribed to the methods. Instead, we recompute it using flow-sensitive type inference starting from the entry point of the program. Type inference infers additional exact and nonnull type qualifiers which are not present in the original program. Those qualifiers aid partial evaluation in the elimination of instance checks and virtual calls.

	Method duplication. To propagate inferred type information across method boundaries, Interflow relies on duplication. Methods are duplicated once per unique signature, i.e., a list of inferred parameter types. Method duplication is analogous (although not strictly equivalent) to monomorphization in other languages such as C++ or Rust.

	Partial evaluation. As part of its traversal, Interflow partially evaluates instance checks, casts, and virtual calls away and replace them with statically predicted results. Partial evaluation removes computations that can be done at compile time and improves the precision of inferred types due to elimination of impossible control flow paths.

	Partial escape analysis. Interflow elides allocations which do not escape. It relies on a variation of a technique called partial escape analysis and scalar replacement [https://dl.acm.org/doi/10.1145/2581122.2544157]. This optimization enables elimination of unnecessary closures, boxes, decorators, builders and other intermediate allocations.

	Inlining. Interflow performs inlining in the same pass as the rest of the optimizations. This opens the door for caller sensitive information based on partial evaluation and partial escape analysis to be taken into account to decide if method call should be inlined.

Additionally, we also add support for following profile-guided optimizations:

	Polymorphic inline caching. Interflow devirtualizes based on flow-sensitive type inference, but it can not predict all of the virtual calls. To aid static devirtualization, we also add support for dynamic devirtualization based on collected type profiles.

	Untaken branch pruning. Some of the application code paths (such as error handling) are rarely taken on typical workloads. Untaken branch pruning detects them based on profile data and hoists them out of a method. This optimization reduces code bloat and helps the inliner due to smaller code size left in the method.

	Profile-directed code placement. Using the basic block frequency LLVM optimizer can improve native code layout to have the likely branches closer together. It improves generated code quality and can have a significant performance impact on some of the workloads.

Evaluation

Note: the performance numbers shown here are based on the current development snapshot of the Interflow, they may change substantially in the final released version.

We run our current prototype of Interflow on Scala Native benchmarks [https://github.com/scala-native/scala-native-benchmarks] on a machine equipped with Intel i9 7900X CPU. Interflow achieves up to 3.09x higher throughput (with a geometric mean speedup of 1.8x) than Scala Native 0.3.7. Moreover, with the addition of PGO, Interflow gets up to 4.71x faster (with a geometric mean speedup 1.96x) faster than the Scala Native:

[image: ../_images/throughput-sn.png]

Additionally, we also compare our performance results with Graal Native Image (1.0-RC1 Enterprise Edition) and warmed up HotSpot JDK (1.8.0-1711-b11).

[image: ../_images/throughput-native-image.png]

Both Scala Native 0.3.7 (geomean 0.49x) and Native Image 1.0-RC1 (geomean 0.47x) without PGO fail to achieve performance comparable to the a warmed-up JIT compiler. Native Image’s implementation of PGO obtains impressive speedups, but it is still behind JDK8 (geomean 0.73x).

On the other hand, Interflow (geomean 0.89x) outperforms Graal Native Image statically. With the addition of PGO, Interflow gets quite close to the throughput of a fully warmed JIT compiler (geomean 0.96x).

Interestingly enough, with Interflow, profile-guided optimizations are not strictly required to get the best performance on 7 out of 12 benchmarks. PGO is just an added extra that can push last 5-10% of the performance envelope.

Conclusion

This post provides a sneak peak at Interflow, an upcoming optimizer for Scala Native. Additionally, we’re also going to provide support for profile-guided optimization as an opt-in feature for users who want to obtain absolute best peak performance for Scala Native compiled code. Interflow and PGO are currently in development. Stay tuned for updates on general availability on twitter.com/scala_native [https://twitter.com/scala_native].

Changelog

	0.4.0 (Jan 19, 2021)

	0.4.0-M2 (May 23, 2019)

	0.4.0-M1 (May 23, 2019)

	0.3.9 (Apr 23, 2019)

	0.3.8 (Jul 16, 2018)

	0.3.7 (Mar 29, 2018)

	0.3.6 (Dec 12, 2017)

	0.3.5 (Dec 12, 2017)

	0.3.4 (Dec 12, 2017)

	0.3.3 (Sep 7, 2017)

	0.3.2 (Aug 8, 2017)

	0.3.1 (June 29, 2017)

	0.3.0 (June 15, 2017)

	0.2.1 (April 27, 2017)

	0.2.0 (April 26, 2017)

	0.1.0 (March 14, 2017)

0.4.0 (Jan 19, 2021)

We are happy to announce the release of Scala Native 0.4.0!

Scala Native is an optimizing ahead-of-time compiler and lightweight managed runtime designed specifically for Scala.
It is developed at the Scala Center [https://scala.epfl.ch/] and with the help from VirtusLab [https://virtuslab.com]
along with contributors from the community.

Check out the documentation at https://scala-native.readthedocs.io/ [https://scala-native.readthedocs.io/en/latest]

TL;DR

	Not backward compatible with previous releases,

	A unique nativeConfig setting replaces the set of nativeX settings,

	The partial implementation of the JDK packages java.time and java.text were removed from core repo.
Third-party libraries such as scala-java-time and scala-java-locales should be used instead,

	CFuncPtr is now created by implicit conversion from ordinary scala.Function

	Added Scala 2.12 and 2.13 support,

	Added support for JUnit,

	Additional C/C++ can be added to compilation pipeline,

	Allowed for cross compilation using custom target triple

	Allowed reflective instantiation by using @EnableReflectiveInstantiation annotation,

	Added new Garbage Collector - Concurrent Mark and Parallel Sweep Garbage Collector, called Commix,

	Various bug fixes

Breaking changes

Broken backward compatibility

Scala Native 0.4.0 breaks backward binary compatibility with previous releases of Scala Native.
Libraries published using version 0.4.0-M2 or older must be republished for Scala Native 0.4.x.

Removal of java.time / java.text

This release removes the partial implementations of the java.time and java.text packages from Scala Native core.
This will allow third-party libraries, like scala-java-time and scala-java-locales, to provide more complete versions thereof.

Using methods that directly or transitively need the removed classes will require an additional dependency on the appropriate third-party library.
For example:

val str: String = "Hello Native"
str.toLowerCase() // works as before
str.toLowerCase(Locale.French) // requires scala-java-locales to link

NativeConfig replaces setting keys

The nativeXyz setting keys are now deprecated in favor of a single nativeConfig setting, which can be used as follows:

// build.sbt
nativeConfig ~= {
 _.withMode(build.Mode.releaseFast)
 .withGC(build.GC.immix)
 .withLTO(build.LTO.full)
 .withOptimize(true)
 .withCompileOptions(Nil)
 .withLinkingOptions(Nil)
}

Old style settings keys are still supported, but they have lower priority than the new config and will be removed
at some point in the future.
In the following example resulting LTO setting would be set to thin

nativeConfig := nativeConfig.value.withLTO(build.LTO.thin)

nativeLTO := "none"

CFuncPtr changes

You no longer need to implement the CFuncPtrN trait which is now private for Scala Native implementation.
Instead, you can use an implicit conversion method taking arbitrary scala.FunctionN and returning CFuncPtrN.

type Callback = CFuncPtr1[CInt,Unit]
def registerCallback(cFn: Callback): Unit = extern
def fn(n: CInt): Unit = ???

registerCallback(CFuncPtr1.fromScalaFunction(fn))
registerCallback(fn)

registerCallback { (n: CInt) => println("hello native") }

It’s now also possible to work with an arbitrary pointer and convert it to CFuncPtrN that can be called in your Scala code
or to convert your function to any pointer if your native library needs this.

import scala.scalanative.unsafe.Ptr
val cFnPtr: CFuncPtr0[CInt] = ???
val fnPtr: Ptr[Byte] = CFuncPtr.toPtr(cFnPtr)
val fnFromPtr: CFuncPtr0[CInt] = CFuncPtr.fromPtr[CFuncPtr0[CInt]](fnPtr)

Other breaking changes:

	Sbt 0.13.x is no longer supported - upgrade to 1.1.6 or newer.

	The minimal version of Clang working with Scala Native is now 6.0

	CSize is now unsigned numeral type

	Usage of signed numeral types for methods expecting CSize was deprecated.

New features

Supported Scala versions

We added support for Scala 2.12.13 and 2.13.4, in addition to the existing support for 2.11.12.

JUnit Support

Scala Native now comes with JUnit support out of the box, this means that you can write tests in the same way you would do
for a Scala/JVM or Scala.js project. To enable JUnit tests all you will need to do is to add the two following lines to your build.sbt.

addCompilerPlugin("org.scala-native" % "junit-plugin" % nativeVersion cross CrossVersion.full)
libraryDependencies += "org.scala-native" %%% "junit-runtime" % nativeVersion % "test"

Reflective instantiation

Since this release you are able to reflectively instantiate definitions marked with the @EnableReflectiveInstantation annotation,
as well as its descendants.
Annotated classes and modules, having a concrete implementation, can be accessed via the provided scalanative.reflect.Reflect API.
If you have used Scala.js before, it may seem similar to you, as the new implementation uses exactly the same API.

Scala Native does not support full reflection support, although this feature might fix most of the issues that could occur
in users code.

package x.y.z

@EnableReflectiveInstantation
trait ReflectiveFoo {
 val value: String = "foo"
}

object SingleFoo extends ReflectiveFoo

case class MultipleFoo(times: Int) extends ReflectiveFoo {
 override val value: String = super.value * times
}

for {
 cls <- lookupInstantiatableClass("x.y.z.MultipleFoo")
 ctor <- cls.getConstructor(classOf[Int])
 obj <- ctor.newInstance(5)
} yield obj // results in Some(new MultipleFoo(5))

for {
 cls <- lookupLoadableModule("x.y.z.SingleFoo")
 obj <- cls.loadModule()
} yield obj // results Some(SingleFoo)

Cross compilation

It is now possible to define a custom target for the compiler by providing an LLVM-style TargetTriple [https://clang.llvm.org/docs/CrossCompilation.html] in your config.
The default behavior is still to target the host architecture and operating system.

For example, if you’re working on Linux and would like to create an executable suitable for MacOS without changing your whole build,
you can use the following sbt setting::

sbt 'set nativeConfig ~= {_.withTargetTriple("x86_64-apple-darwin<version>")}' myApp/nativeLink

We consider changing target triple as a feature for advanced users, and cannot promise it would currently work with any possible configuration yet.
However, the number of supported architectures and operating systems would definitely grow in the future.

When using Linux / MacOS, you can check the target triple used in your environment with the command llvm-config --host-target.

Native sources in the build

With the 0.4.0 release you’re able to put your C/C++ sources in the resources/scala-native directory inside your project,
so they will be linked and compiled inside the SN pipeline.

As an example you can use it to access macro-defined constants and functions or to pass structs from the stack to C functions.

// src/resources/scala-native/example.c
typedef int (*Callback0) (void);

const int EXAMPLE_CONSTANT = 42;

int exec(Callback0 f) {
 return f();
};

// src/main/example.scala
@extern
object example {
 def exec(cb: CFuncPtr0[CInt]): ExecResult = extern

 @name("EXAMPLE_CONSTANT")
 final val someConstant: Int = extern
}

Commix GC

This release also adds a new Garbage Collector - Commix, a parallel mark, and concurrent sweep GC, based on the well known Immix GC.
It reduces GC pause times by utilizing additional processor cores during mark and sweep phases.

While the GC itself will use multiple threads, Scala Native still does not support multi-threading in the application code.
Commix GC was written in C and uses pthread to work. In case your application needs concurrency support, you may try the experimental library scala-native-loop [https://github.com/scala-native/scala-native-loop]

Bugfixes

	Failures during the build of multiple parallel projects using common jar were fixed,

	Lowered overall memory usage when compiling and linking,

	Value classes are now correctly handled in lambda functions,

	The synchronized flag in now taken into account when generating methods,

	Constructors are no longer treated are virtual methods, they’re always resolved statically,

	Generic CFuncPtr can be passed as method arguments,

	Binary operations with Nothing arguments will no longer break compilation,

	Resolving of public method no longer can result in private method with the same name,

	Instances of java.lang.Class are now cached and can be correctly tested using reference equality,

	Triple-quoted CString’s are now correctly escaped,

	Identifiers starting with digits are now correctly handled,

	Fixed errors with too many open files after consecutive runs,

	Fixed crashes when HOME env variable was not set,

	Boehm GC installed using MacPorts is now supported,

	Fixed segmentation fault when trying to access current, unlinked directory,

	malloc will now throw OutOfMemoryError when it cannot allocate memory,

	toCString & fromCString now correctly return null,

	Fixed errors with not cleared errno when using POSIX readdir

	Array operation now throw JVM-compilant ArrayIndexOutOfBoundsException,

	Fix bug with BufferedInputStream.read() for values bigger then 0x7f,

	Files.walk accepts non-directory files,

	Improved IEEE754 specification compliance when parsing strings,

	Fixed infinite loop in java.io.RandomAccesFile.readLine,

	Added multiple missing javalib classes and methods

Contributors

Big thanks to everybody who contributed to this release or reported an issue!

$ git shortlog -sn --no-merges v0.4.0-M2..v0.4.0
 64	LeeTibbert
 58	Wojciech Mazur
 37	Eric K Richardson
 13	Kirill A. Korinsky
 10	Ergys Dona
 8	Lorenzo Gabriele
 4	Sébastien Doeraene
 3	Valdis Adamsons
 2	Denys Shabalin
 2	Ondra Pelech
 2	kerr
 1	Danny Lee
 1	Nadav Samet
 1	Richard Whaling
 1	jokade

 	Merged PRs
 	207

 	Closed issues
 	203

 	Contributors
 	15

 0.4.0-M2 (May 23, 2019)

0.4.0-M2 (May 23, 2019)

Read release notes for 0.4.0-M2 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.4.0-M2].

0.4.0-M1 (May 23, 2019)

Read release notes for 0.4.0-M1 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.4.0-M1].

0.3.9 (Apr 23, 2019)

Read release notes for 0.3.9 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.9].

0.3.8 (Jul 16, 2018)

Read release notes for 0.3.8 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.8].

0.3.7 (Mar 29, 2018)

Read release notes for 0.3.7 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.7].

0.3.6 (Dec 12, 2017)

Read release notes for 0.3.6 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.6].

0.3.5 (Dec 12, 2017)

Read release notes for 0.3.5 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.5].

0.3.4 (Dec 12, 2017)

Read release notes for 0.3.4 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.4].

0.3.3 (Sep 7, 2017)

Read release notes for 0.3.3 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.3].

0.3.2 (Aug 8, 2017)

Read release notes for 0.3.2 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.2].

0.3.1 (June 29, 2017)

Read release notes for 0.3.1 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.1].

0.3.0 (June 15, 2017)

Read release notes for 0.3.0 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.3.0].

0.2.1 (April 27, 2017)

Read release notes for 0.2.1 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.2.1].

0.2.0 (April 26, 2017)

Read release notes for 0.2.0 on GitHub [https://github.com/scala-native/scala-native/releases/tag/v0.2.0].

0.1.0 (March 14, 2017)

Read original announcement on scala-lang.org [https://scala-lang.org/blog/2017/03/14/scala-native-0.1-is-here.html]

 FAQ

FAQ

—

Q: How do I make the resulting executable smaller?

A: Compress the binary with https://upx.github.io/

—

Q: Does Scala Native support WebAssembly?

A: Support for WebAssembly is out of scope for the project.
If you need to run Scala code in the browser, consider using
Scala.js [https://www.scala-js.org] instead.

Troubleshooting

When compiling your Scala Native project, the linker ld may fail with the following message:

relocation R_X86_64_32 against `.rodata.str1.1' can not be used when making a shared object; recompile with -fPIC

It is likely that the LDFLAGS environment variable enables hardening. For example, this occurs when the hardening-wrapper package is installed on Arch Linux. It can be safely removed.

 Index

Index

 Release v0.4.1 (2021-10-20)

Release v0.4.1 (2021-10-20)

We’re happy to announce the release of Scala Native v0.4.1!

TL;DR

	Backward compatible with previous 0.4.x releases,

	Windows support

	Immix and Commix GC supports WeakReferences

	FileChannels improvements and support for MappedByteBuffers

	Updated JUnit runtime

	Faster builds in release modes

	New mechanism - linktime resolved values and conditional branching

	Improvements to Java stdlib implementation

	Multiple bugfixes

 	Commits since last release
 	158

 	Merged PRs
 	158

 	Closed issues
 	113

 	Contributors
 	15

Most impacting changes

Windows support

This release of Scala Native brings native support for compilation and running
Scala Native applications on Windows. For instructions how to setup your environment
check out our documentation [https://scala-native.readthedocs.io/en/latest/user/setup.html]

Linktime resolved expressions

To make Windows support possible we introduced a new way of interacting with native code,
especially with OS native functions that might not be existing on different platforms.
Our solution to this problem is the introduction of linktime resolved expressions - special
values using @scala.scalanative.unsafe.resolvedAtLinktime annotation.
Each of such a value provides a stub in NIR (Native Intermediate Representation),
which would be replaced when performing linking, based on values defined in scala.scalanative.build.NativeConfig.
Currently, the list of linktime resolved expressions is limited and users cannot create new ones, but it might change in the future.

// Example of linktime resolved expressions definition
package scala.scalanative.meta
import scala.scalanative.unsafe._

object LinktimeInfo {
 @resolvedAtLinktime("scala.scalanative.meta.linktimeinfo.isWindows")
 def isWindows: Boolean = resolved
}

In case of usage of if condition containg linktime resolved value,
at the time of performing linking of NIR files, whole condition expression
would be replaced with constant boolean value equal to true or false.
At this point we can dead-code eliminate never taken branch.
This feature is crucial for cross compilation on different platforms - if we eliminate
branch containing call to OS specific function it would be never used, and though we would
not need its definition when building.

In the snippet bellow you can see an example of linktime conditional branching. Depending on
Native Config settings only one of the if condition branch would be taken, the second one
would be always discarded.

import scala.scalanative.meta.LinktimeInfo.isWindows
import scala.scalanative.unsafe._

def isDirectory(path: CString): Boolean = {
 if (isWindows) {
 val flag = FILE_ATTRIBUTE_DIRECTORY
 GetFileAttributesA(path) & FILE_ATTRIBUTE_DIRECTORY != 0
 } else {
 val buf = alloc[stat.stat]
 stat.stat(path, buf)
 stat.S_ISDIR(buf._13) != 0
 }
}

Weak References support

The next new feature is partial support for Weak References, however usage of this feature
is only possible when using Immix or Commix GC - they have beed adopted to handle proper marking
of WeakReference objects. Other Garbage Collector implementations, like external Boehm GC do not
contain mechanisms allowing to perform WeakReference semantics.
To check at runtime if your current GC supports weak references
you can use the dedicated linktime resolved value LinktimeInfo.isWeakReferenceSupported

Contributors

Big thanks to everybody who contributed to this release or reported an issue!

$ git shortlog -sn --no-merges v0.4.0..v0.4.1
 56	Wojciech Mazur
 40	LeeTibbert
 19	Jan Chyb
 18	Eric K Richardson
 6	Nacho Cordón
 4	Kirill A. Korinsky
 4	Sébastien Doeraene
 2	João Costa
 2	Lorenzo Gabriele
 2	Teodor Dimov
 1	Alex Dupre
 1	Bjorn Regnell
 1	Denys Shabalin
 1	Ergys Dona
 1	philwalk

Merged PRs

v0.4.1 [https://github.com/scala-native/scala-native/tree/v0.4.1] (2021-10-20)

Full Changelog [https://github.com/scala-native/scala-native/compare/v0.4.0...v0.4.1]

Merged pull requests:

Scala compiler plugin

	Fix: #2187 Match with guards does not compile
#2188 [https://github.com/scala-native/scala-native/pull/2188]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix #2305 compile error on macro using Scala 2.11.12
#2336 [https://github.com/scala-native/scala-native/pull/2336]
(jchyb [https://github.com/jchyb])

	Fix: #2144, Lambda function generation should check if boxing is needed.
#2147 [https://github.com/scala-native/scala-native/pull/2147]
(WojciechMazur [https://github.com/WojciechMazur])

Scala Native build

	Speedup Interflow
#2134 [https://github.com/scala-native/scala-native/pull/2134]
(JD557 [https://github.com/JD557])

	Remove legacy textual NIR parser
#2158 [https://github.com/scala-native/scala-native/pull/2158]
(WojciechMazur [https://github.com/WojciechMazur])

	Allow for cross building tools
#2156 [https://github.com/scala-native/scala-native/pull/2156]
(WojciechMazur [https://github.com/WojciechMazur])

	Improve speed of release-full compilation
#2183 [https://github.com/scala-native/scala-native/pull/2183]
(catap [https://github.com/catap])

	Fix reporting undefined symbols not marked with stub
#2162 [https://github.com/scala-native/scala-native/pull/2162]
(WojciechMazur [https://github.com/WojciechMazur])

	Refactor build to compile each project and ll separately
#2234 [https://github.com/scala-native/scala-native/pull/2234]
(ekrich [https://github.com/ekrich])

	Allow for linktime conditional branching
#2206 [https://github.com/scala-native/scala-native/pull/2206]
(WojciechMazur [https://github.com/WojciechMazur])

	Ignore no longer existing objects when inheriting Interflow state
#2344 [https://github.com/scala-native/scala-native/pull/2344]
(WojciechMazur [https://github.com/WojciechMazur])

	Source compatibility with Scala 3 for tools
#2347 [https://github.com/scala-native/scala-native/pull/2347]
(WojciechMazur [https://github.com/WojciechMazur])

	Always pass the LTO config without considering the release mode
#2111 [https://github.com/scala-native/scala-native/pull/2111]
(lolgab [https://github.com/lolgab])

	Fix #2211: NIR warnings from incorrect subtyping resolution
#2357 [https://github.com/scala-native/scala-native/pull/2357]
(jchyb [https://github.com/jchyb])

	Use LLD linker when setting LTO on Windows
#2381 [https://github.com/scala-native/scala-native/pull/2381]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix: Type.isPtrBox always returns false
#2133 [https://github.com/scala-native/scala-native/pull/2133]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix invalid nullability resolution for boxed primitives
#2390 [https://github.com/scala-native/scala-native/pull/2390]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix #805, extending class containing main does not include it in scope
#1984 [https://github.com/scala-native/scala-native/pull/1984]
(WojciechMazur [https://github.com/WojciechMazur])

Sbt plugin

	Fix sbt plugin incompatibilities on Windows
#2189 [https://github.com/scala-native/scala-native/pull/2189]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix #2321: Fix Clang discovery on Windows
#2334 [https://github.com/scala-native/scala-native/pull/2334]
(ekrich [https://github.com/ekrich])

	if Windows, append .exe to binaryName in discover(), to support mingw64 and cygwin compilers
#2349 [https://github.com/scala-native/scala-native/pull/2349]
(philwalk [https://github.com/philwalk])

	Fix resolving binary version in ScalaNativeCrossVersion for snapshots
#2207 [https://github.com/scala-native/scala-native/pull/2207]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix 2378; Allow to read from stdin when using run command
#2384 [https://github.com/scala-native/scala-native/pull/2384]
(WojciechMazur [https://github.com/WojciechMazur])

	Skip linking on subsequent nativeLink calls in SN sbt plugin
#2389 [https://github.com/scala-native/scala-native/pull/2389]
(jchyb [https://github.com/jchyb])

	Fix #2146: Publish sbt-scala-native to Sonatype instead of Bintray.
#2386 [https://github.com/scala-native/scala-native/pull/2386]
(sjrd [https://github.com/sjrd])

	Sbt nativeLink command should fail in case of clang failure
#2394 [https://github.com/scala-native/scala-native/pull/2394]
(WojciechMazur [https://github.com/WojciechMazur])

Garbage Collector

	Corrects bug in named semaphores length for commix garbage collector
#2216 [https://github.com/scala-native/scala-native/pull/2216]
(ncordon [https://github.com/ncordon])

	Performs better checks in commix semaphore operations
#2229 [https://github.com/scala-native/scala-native/pull/2229]
(ncordon [https://github.com/ncordon])

	Removes magic constants from the commix sempahore length code
#2232 [https://github.com/scala-native/scala-native/pull/2232]
(ncordon [https://github.com/ncordon])

	Support GC shared code and add experimental GC setup
#2231 [https://github.com/scala-native/scala-native/pull/2231]
(ekrich [https://github.com/ekrich])

	Allow compilation of GCs on Windows
#2264 [https://github.com/scala-native/scala-native/pull/2264]
(WojciechMazur [https://github.com/WojciechMazur])

	Add a configurable env flag that controls memory preallocation when G…
#2205 [https://github.com/scala-native/scala-native/pull/2205]
(teodimoff [https://github.com/teodimoff])

	Respect doPrealloc if we are not on linux.
#2304 [https://github.com/scala-native/scala-native/pull/2304]
(teodimoff [https://github.com/teodimoff])

	Incrementally commit memory in GC on Windows
#2293 [https://github.com/scala-native/scala-native/pull/2293]
(WojciechMazur [https://github.com/WojciechMazur])

	Allow to use CommixGC on Windows
#2294 [https://github.com/scala-native/scala-native/pull/2294]
(WojciechMazur [https://github.com/WojciechMazur])

	Allow to use Boehm GC on Windows
#2369 [https://github.com/scala-native/scala-native/pull/2369]
(WojciechMazur [https://github.com/WojciechMazur])

Java Standard Library

	Fix #1590: Correct j.i.DataInputStream EOF handling & skipBytes
#2104 [https://github.com/scala-native/scala-native/pull/2104]
(LeeTibbert [https://github.com/LeeTibbert])

	Fix #2137: Two defects in j.n.PlainSocketImpl#read
#2140 [https://github.com/scala-native/scala-native/pull/2140]
(LeeTibbert [https://github.com/LeeTibbert])

	Simplify match case in j.n.PlainSocketImpl
#2149 [https://github.com/scala-native/scala-native/pull/2149]
(LeeTibbert [https://github.com/LeeTibbert])

	Fix #2138: j.i.DataInputStream#rebuffer handles short reads correctly.
#2142 [https://github.com/scala-native/scala-native/pull/2142]
(LeeTibbert [https://github.com/LeeTibbert])

	Fix #2143: j.i.DataOutputStream now does bulk writes where possible.
#2152 [https://github.com/scala-native/scala-native/pull/2152]
(LeeTibbert [https://github.com/LeeTibbert])

	Fix #2164: Return -1 at first EOF at Base64.DecodingInputStream
#2165 [https://github.com/scala-native/scala-native/pull/2165]
(catap [https://github.com/catap])

	Port DataInputStream readUTF code & all of DataInputStreamTest
#2153 [https://github.com/scala-native/scala-native/pull/2153]
(LeeTibbert [https://github.com/LeeTibbert])

	Fix #2163: Do not use regexp in j.u.Formatter
#2169 [https://github.com/scala-native/scala-native/pull/2169]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix #2178: j.l.{Double,Float}#isFinite now handles NaN as specified.
#2180 [https://github.com/scala-native/scala-native/pull/2180]
(LeeTibbert [https://github.com/LeeTibbert])

	Correct j.i.DataInputStream static readUTF implementation.
#2172 [https://github.com/scala-native/scala-native/pull/2172]
(LeeTibbert [https://github.com/LeeTibbert])

	Reduce indirection for the implementation of getClass
#2139 [https://github.com/scala-native/scala-native/pull/2139]
(densh [https://github.com/densh])

	Fix #2063: Modify j.u.Date#toString to be Java 8 compliant.
#2110 [https://github.com/scala-native/scala-native/pull/2110]
(LeeTibbert [https://github.com/LeeTibbert])

	Update j.u.Formatter to the latest version from Scala.js.
#2196 [https://github.com/scala-native/scala-native/pull/2196]
(sjrd [https://github.com/sjrd])

	Implement j.nio.file.PosixException object
#2198 [https://github.com/scala-native/scala-native/pull/2198]
(LeeTibbert [https://github.com/LeeTibbert])

	Make it explicit that Unix FileAttributeView is provided by Posix calls.
#2227 [https://github.com/scala-native/scala-native/pull/2227]
(LeeTibbert [https://github.com/LeeTibbert])

	Update & supersede PR #1609: Implement java.nio UserPrincipal infrastructure.
#2244 [https://github.com/scala-native/scala-native/pull/2244]
(LeeTibbert [https://github.com/LeeTibbert])

	Homogenises numeric exception messages
#2270 [https://github.com/scala-native/scala-native/pull/2270]
(ncordon [https://github.com/ncordon])

	Fix #I2283 - j.nio.file.Files.copy() now sets lastModified time correctly
#2284 [https://github.com/scala-native/scala-native/pull/2284]
(LeeTibbert [https://github.com/LeeTibbert])

	Use Unicode 13 for Character toUpperCase and toLowerCase
#2103 [https://github.com/scala-native/scala-native/pull/2103]
(ekrich [https://github.com/ekrich])

	Fix #2313: Defect in j.n.InetAddress#createIPStringFromByteArray
#2348 [https://github.com/scala-native/scala-native/pull/2348]
(jchyb [https://github.com/jchyb])

	A few improvements inside FS related API
#2081 [https://github.com/scala-native/scala-native/pull/2081]
(catap [https://github.com/catap])

	Correct BufferedInputStream mark() and close() behaviour
#2354 [https://github.com/scala-native/scala-native/pull/2354]
(WojciechMazur [https://github.com/WojciechMazur])

	Implement java.io for Windows
#2355 [https://github.com/scala-native/scala-native/pull/2355]
(WojciechMazur [https://github.com/WojciechMazur])

	Implement java.nio on Windows
#2358 [https://github.com/scala-native/scala-native/pull/2358]
(WojciechMazur [https://github.com/WojciechMazur])

	Implement java.lang.ProcessBuilder for Windows
#2360 [https://github.com/scala-native/scala-native/pull/2360]
(WojciechMazur [https://github.com/WojciechMazur])

	Implement java.net for Windows
#2364 [https://github.com/scala-native/scala-native/pull/2364]
(WojciechMazur [https://github.com/WojciechMazur])

	Allow to use java.util.zip in Windows
#2361 [https://github.com/scala-native/scala-native/pull/2361]
(WojciechMazur [https://github.com/WojciechMazur])

	Port CVarArgList implementation for Windows
#2376 [https://github.com/scala-native/scala-native/pull/2376]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix: #2135, segmentation-faults when working with file channels
#2141 [https://github.com/scala-native/scala-native/pull/2141]
(WojciechMazur [https://github.com/WojciechMazur])

	Add WeakReference functionality and finalization-like operation via WeakReferenceRegistry
#2368 [https://github.com/scala-native/scala-native/pull/2368]
(jchyb [https://github.com/jchyb])

	Fix bug with File.getCanonicalFile leading to infinite recursion loop on Windows
#2374 [https://github.com/scala-native/scala-native/pull/2374]
(WojciechMazur [https://github.com/WojciechMazur])

	Remove memory leak when reading user locale country and language data on Windows
#2383 [https://github.com/scala-native/scala-native/pull/2383]
(WojciechMazur [https://github.com/WojciechMazur])

	Reimplement Thread.sleep to be OS-specific and multithreading safe
#2373 [https://github.com/scala-native/scala-native/pull/2373]
(WojciechMazur [https://github.com/WojciechMazur])

	Fix #2396: URI normalize doesn’t seem to work
#2397 [https://github.com/scala-native/scala-native/pull/2397]
(jchyb [https://github.com/jchyb])

	Update RE2 regex implementation
#2402 [https://github.com/scala-native/scala-native/pull/2402]
(jchyb [https://github.com/jchyb])

	Fix java.nio.file.Files inconsistencies between JVM and Native
#2408 [https://github.com/scala-native/scala-native/pull/2408]
(jchyb [https://github.com/jchyb])

	Match regex implementation of re2j version 1.3
#2407 [https://github.com/scala-native/scala-native/pull/2407]
(jchyb [https://github.com/jchyb])

	Fix sn.regex parsing of OR expressions with a common prefix and \Q\E quoted expressions
#2410 [https://github.com/scala-native/scala-native/pull/2410]
(jchyb [https://github.com/jchyb])

	Add missing FileChannel functionality in javalib
#2393 [https://github.com/scala-native/scala-native/pull/2393]
(jchyb [https://github.com/jchyb])

Native library

	Fix 1664: Correct two memory access flaws in POSIX time
#2160 [https://github.com/scala-native/scala-native/pull/2160]
(LeeTibbert [https://github.com/LeeTibbert])

	Fix #1665: posixlib localtime() now ensures tzset() has been called.
#2269 [https://github.com/scala-native/scala-native/pull/2269]
(LeeTibbert [https://github.com/LeeTibbert])

	Support for POSIX signal
#1362 [https://github.com/scala-native/scala-native/pull/1362]
(ekrich [https://github.com/ekrich])

	posix.time strptime improvements & TimeTest macOS correction
#2203 [https://github.com/scala-native/scala-native/pull/2203]
(LeeTibbert [https://github.com/LeeTibbert])

	Fix #1646: Implement posixlib sys/resource.scala
#2193 [https://github.com/scala-native/scala-native/pull/2193]
(LeeTibbert [https://github.com/LeeTibbert])

	Makes dirent.c more readable and returns -1 only on empty dir
#2221 [https://github.com/scala-native/scala-native/pull/2221]
(ncordon [https://github.com/ncordon])

	Fix #2251: size of scalanative_sockaddr_in == struct sockaddr
#2252 [https://github.com/scala-native/scala-native/pull/2252]
(LeeTibbert [https://github.com/LeeTibbert])

	Fix #1921, #2250: Evolve hacktoberfest Posix socket sendto() & recvfrom()
#2258 [https://github.com/scala-native/scala-native/pull/2258]
(LeeTibbert [https://github.com/LeeTibbert])

	Improve POSIX pthread code quality
#2307 [https://github.com/scala-native/scala-native/pull/2307]
(ekrich [https://github.com/ekrich])

	Implement shutdown using atexit instead of c++
#1906 [https://github.com/scala-native/scala-native/pull/1906]
(lolgab [https://github.com/lolgab])

Documentation

	Make corresponding Scala Native version evident in documentation.
#2116 [https://github.com/scala-native/scala-native/pull/2116]
(LeeTibbert [https://github.com/LeeTibbert])

	Remove two instances of a hard-coded Scala Native version in documentation.
#2121 [https://github.com/scala-native/scala-native/pull/2121]
(LeeTibbert [https://github.com/LeeTibbert])

	Generate latest documentation copyright year
#2115 [https://github.com/scala-native/scala-native/pull/2115]
(LeeTibbert [https://github.com/LeeTibbert])

	Add missing commix reference in the documentation
#2136 [https://github.com/scala-native/scala-native/pull/2136]
(JD557 [https://github.com/JD557])

	add docs on profiling including how to make flamegraphs
#2226 [https://github.com/scala-native/scala-native/pull/2226]
(bjornregnell [https://github.com/bjornregnell])

	Fix #2267: Correct a broken link in docs/user/profiling.rst.
#2268 [https://github.com/scala-native/scala-native/pull/2268]
(LeeTibbert [https://github.com/LeeTibbert])

	Explain how to create universal binary on macOS
#2405 [https://github.com/scala-native/scala-native/pull/2405]
(catap [https://github.com/catap])

Misc

	Update junit-runtime to match JUnit 4.13.2
#2331 [https://github.com/scala-native/scala-native/pull/2331]
(jchyb [https://github.com/jchyb])

	Add a default signal handler to TestMain
#2338 [https://github.com/scala-native/scala-native/pull/2338]
(jchyb [https://github.com/jchyb])

	Restore scala.collection optimization overrides as patch files
#2168 [https://github.com/scala-native/scala-native/pull/2168]
(WojciechMazur [https://github.com/WojciechMazur])

	Allow testing against Scala partest and JUnit tests
#2154 [https://github.com/scala-native/scala-native/pull/2154]
(WojciechMazur [https://github.com/WojciechMazur])

	Change testing setup to allow javalib testing against the JVM
#2335 [https://github.com/scala-native/scala-native/pull/2335]
(jchyb [https://github.com/jchyb])

	Setup MiMa checks
#2356 [https://github.com/scala-native/scala-native/pull/2356]
(WojciechMazur [https://github.com/WojciechMazur])

	Allow scala-native to be used with FreeBSD
#2148 [https://github.com/scala-native/scala-native/pull/2148]
(alexdupre [https://github.com/alexdupre])

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/logo.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_images/throughput-sn.png
Speedup relative to Scala Native

w
1

N
1

[Interflow with PGO

4.71x
EEE Interflow
Il Scala Native
3.92x
3.07x 3.09x
2.82x
2.67x
2.54x
2.20x
1.97x
1.77x 1.80x
1.57x 1.50x 1.44x
1.20x 1.29x
1.00x I100x |100x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
bounce list richards permute deltablue tracer brainfuck json cd kmeans gcbench sudoku

_images/vs-install.png
Modifying — Visual Studio Community 2019 — 16.10.4

Workloads Individual components Language packs

Web & Cloud (4)

@ ASPNET and web development
Build web applications using ASP.NET Core, ASP.NET,

HTML/JavaScript, and Containers including Docker supp...

@ Python development
Editing, debugging, interactive development and source

control for Python

Desktop & Mobile (5)

NET desktop development
Build WPF, Windows Forms, and console applications

using C#, Visual Basic, and F# with NET and .NET Frame...

@M Universal Windows Platform development

MM Create applications for the Universal Windows Platform
with C#, VB, or optionally C++.

Installation locations

S Aaure development

Azure SDKs, tools, and projects for developing cloud apps

and creating resources using .NET and .NET Framework....

Node.js development
Build scalable network applications using Nodejs, an
asynchronous event-driven JavaScript runtime.

I__I_:I Desktop development with C++
Build modern C++ apps for Windows using tools of your
choice, including MSVC, Clang, CMake, or MSBuild.

Q Mobile development with .NET
Build cross-platform applications for i0S, Android or

Windows using Xamarin.

Installation details

» Visual Studio core editor
~ Desktop development with C++ *

~ Included

¥ Ct+ core desktop features
~ Optional
MSVC v142 - VS 2019 C++ x64/x86 build t...
Windows 10 SDK (10.0.19041.0)
Just-In-Time debugger
C++ profiling tools
C++ CMake tools for Windows
C++ ATL for latest v142 build tools (x86 &...
Test Adapter for Boost Test
Test Adapter for Google Test
Live Share
IntelliCode
C++ AddressSanitizer
MSVC v142 - VS 2019 C++ ARM64 build t..
C++ MFC for latest v142 build tools (x86...
C++/CLI support for v142 build tools (Late...
C++ Modules for v142 build tools (x64/x8...
C++ Clang tools for Windows (11.0.0 - x64..

JavaScript diagnostics

[N RN N RN N J<]

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Scala Native

 		
 User’s Guide

 		
 Environment setup

 		
 Installing sbt

 		
 Installing clang and runtime dependencies

 		
 Building projects with sbt

 		
 Minimal sbt project

 		
 Scala versions

 		
 Sbt settings and tasks

 		
 Compilation modes

 		
 Garbage collectors

 		
 Link-Time Optimization (LTO)

 		
 Cross compilation using target triple

 		
 Publishing

 		
 Including Native Code in your Application or Library

 		
 Applications with Native Code

 		
 Using libraries with Native Code

 		
 Cross compilation

 		
 Language semantics

 		
 Interop extensions

 		
 Multithreading

 		
 Finalization

 		
 Undefined behavior

 		
 Native code interoperability

 		
 Extern objects

 		
 Pointer types

 		
 Platform-specific types

 		
 Size and alignment of types

 		
 Unsigned integer types

 		
 Testing

 		
 Profiling

 		
 Measuring execution time and memory

 		
 Creating Flamegraphs

 		
 Libraries

 		
 Java Standard Library

 		
 Supported classes

 		
 Regular expressions (java.util.regex)

 		
 C Standard Library

 		
 C POSIX Library

 		
 Community Libraries

 		
 Contributor’s Guide

 		
 Contributing guidelines

 		
 Very important notice about Javalib

 		
 Coding style

 		
 C / POSIX Libraries

 		
 General workflow

 		
 Git workflow

 		
 Pull Request Requirements

 		
 Documentation

 		
 Creating Commits And Writing Commit Messages

 		
 Prepare meaningful commits

 		
 First line of the commit message

 		
 Body of the commit message

 		
 Guide to the sbt build

 		
 Common sbt commands

 		
 Normal development workflow

 		
 Build settings via environment variables

 		
 Setting the GC setting via sbt

 		
 Locally publish to test in other builds

 		
 Organization of the build

 		
 Working with scalalib overrides

 		
 The compiler plugin and code generator

 		
 Tips for working on the compiler

 		
 Native Intermediate Representation

 		
 Introduction

 		
 Definitions

 		
 Types

 		
 Control-Flow

 		
 Operands

 		
 Values

 		
 Attributes

 		
 Name mangling

 		
 IntelliJ IDEA

 		
 Metals

 		
 Blog

 		
 Interflow: Scala Native’s upcoming flow-sensitive, profile-guided optimizer

 		
 The Interflow Optimizer

 		
 Evaluation

 		
 Conclusion

 		
 Changelog

 		
 0.4.0 (Jan 19, 2021)

 		
 TL;DR

 		
 Breaking changes

 		
 New features

 		
 Bugfixes

 		
 Contributors

 		
 0.4.0-M2 (May 23, 2019)

 		
 0.4.0-M1 (May 23, 2019)

 		
 0.3.9 (Apr 23, 2019)

 		
 0.3.8 (Jul 16, 2018)

 		
 0.3.7 (Mar 29, 2018)

 		
 0.3.6 (Dec 12, 2017)

 		
 0.3.5 (Dec 12, 2017